File: itkWeightedCovarianceSampleFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (383 lines) | stat: -rw-r--r-- 10,403 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkWeightedCovarianceSampleFilter.h"
#include "itkListSample.h"

constexpr unsigned int MeasurementVectorSize = 3;
unsigned int           counter = 0;

using MeasurementVectorType = itk::FixedArray<float, MeasurementVectorSize>;

namespace itk
{
namespace Statistics
{
template <typename TSample>
class MyWeightedCovarianceSampleFilter : public WeightedCovarianceSampleFilter<TSample>
{
public:
  using Self = MyWeightedCovarianceSampleFilter;

  using Superclass = WeightedCovarianceSampleFilter<TSample>;

  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;
  using SampleType = TSample;

  itkNewMacro(Self);

  // method to invoke MakeOutput with index value different
  // from one or zero. This is to check if an exception will be
  // thrown
  void
  CreateInvalidOutput()
  {
    unsigned int index = 3;
    Superclass::MakeOutput(index);
  }
};
} // namespace Statistics
} // namespace itk

int
itkWeightedCovarianceSampleFilterTest(int, char *[])
{
  std::cout << "WeightedCovarianceSampleFilter test \n \n";

  using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

  using FilterType = itk::Statistics::MyWeightedCovarianceSampleFilter<SampleType>;

  using MeasurementVectorRealType = FilterType::MeasurementVectorRealType;
  using CovarianceMatrixType = FilterType::MatrixType;

  auto filter = FilterType::New();

  MeasurementVectorType measure;

  auto sample = SampleType::New();

  sample->SetMeasurementVectorSize(MeasurementVectorSize);

  measure[0] = 4.00;
  measure[1] = 2.00;
  measure[2] = 0.60;
  sample->PushBack(measure);

  measure[0] = 4.20;
  measure[1] = 2.10;
  measure[2] = 0.59;
  sample->PushBack(measure);

  measure[0] = 3.90;
  measure[1] = 2.00;
  measure[2] = 0.58;
  sample->PushBack(measure);

  measure[0] = 4.30;
  measure[1] = 2.10;
  measure[2] = 0.62;
  sample->PushBack(measure);

  measure[0] = 4.10;
  measure[1] = 2.20;
  measure[2] = 0.63;
  sample->PushBack(measure);

  std::cout << filter->GetNameOfClass() << std::endl;
  filter->Print(std::cout);

  // Invoke update before adding an input. An exception should be
  // thrown.
  try
  {
    filter->Update();
    std::cerr << "Exception should have been thrown since Update() is invoked without setting an input" << std::endl;
    return EXIT_FAILURE;
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cout << "Expected exception caught: " << excp << std::endl;
  }

  if (filter->GetInput() != nullptr)
  {
    std::cerr << "GetInput() should return nullptr if the input has not been set" << std::endl;
    return EXIT_FAILURE;
  }

  // test if exception is thrown if a derived class tries to create
  // an invalid output
  try
  {
    filter->CreateInvalidOutput();
    std::cerr << "Exception should have been thrown: " << std::endl;
    return EXIT_FAILURE;
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cout << "Expected exception caught: " << excp << std::endl;
  }

  filter->ResetPipeline();

  // Run the filter with no weights
  filter->SetInput(sample);

  try
  {
    filter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cout << "Expected exception caught: " << excp << std::endl;
  }

  MeasurementVectorRealType mean = filter->GetMean();
  CovarianceMatrixType      matrix = filter->GetCovarianceMatrix();

  std::cout << "Mean: " << mean << std::endl;
  std::cout << "Covariance Matrix: " << matrix << std::endl;

  // Check the results

  double epsilon = 1e-2;

  MeasurementVectorRealType meanExpected33;
  itk::NumericTraits<MeasurementVectorRealType>::SetLength(meanExpected33, MeasurementVectorSize);
  meanExpected33[0] = 4.10;
  meanExpected33[1] = 2.08;
  meanExpected33[2] = 0.604;

  for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
  {
    if (itk::Math::abs(meanExpected33[i] - mean[i]) > epsilon)
    {
      std::cerr << "The computed mean value is incorrrect" << std::endl;
      return EXIT_FAILURE;
    }
  }

  CovarianceMatrixType matrixExpected33(MeasurementVectorSize, MeasurementVectorSize);

  matrixExpected33[0][0] = 0.025;
  matrixExpected33[0][1] = 0.0075;
  matrixExpected33[0][2] = 0.00175;

  matrixExpected33[1][0] = 0.0075;
  matrixExpected33[1][1] = 0.0070;
  matrixExpected33[1][2] = 0.00135;

  matrixExpected33[2][0] = 0.00175;
  matrixExpected33[2][1] = 0.00135;
  matrixExpected33[2][2] = 0.00043;

  for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
  {
    for (unsigned int j = 0; j < MeasurementVectorSize; ++j)
      if (itk::Math::abs(matrixExpected33[i][j] - matrix[i][j]) > epsilon)
      {
        std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
        return EXIT_FAILURE;
      }
  }

  // Specify weight
  using WeightArrayType = FilterType::WeightArrayType;
  WeightArrayType weightArray(sample->Size());
  weightArray.Fill(1.0);

  filter->SetWeights(weightArray);

  // run with equal weights
  try
  {
    filter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << "Exception caught: " << excp << std::endl;
    return EXIT_FAILURE;
  }


  mean = filter->GetMean();
  matrix = filter->GetCovarianceMatrix();

  std::cout << "Mean: " << mean << std::endl;
  std::cout << "Covariance Matrix: " << matrix << std::endl;

  MeasurementVectorRealType meanExpected3;

  itk::NumericTraits<MeasurementVectorRealType>::SetLength(meanExpected3, MeasurementVectorSize);
  meanExpected3[0] = 4.10;
  meanExpected3[1] = 2.08;
  meanExpected3[2] = 0.604;

  for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
  {
    if (itk::Math::abs(meanExpected3[i] - mean[i]) > epsilon)
    {
      std::cerr << "The computed mean value is incorrrect" << std::endl;
      return EXIT_FAILURE;
    }
  }

  CovarianceMatrixType matrixExpected(MeasurementVectorSize, MeasurementVectorSize);

  matrixExpected[0][0] = 0.025;
  matrixExpected[0][1] = 0.0075;
  matrixExpected[0][2] = 0.00175;

  matrixExpected[1][0] = 0.0075;
  matrixExpected[1][1] = 0.0070;
  matrixExpected[1][2] = 0.00135;

  matrixExpected[2][0] = 0.00175;
  matrixExpected[2][1] = 0.00135;
  matrixExpected[2][2] = 0.00043;

  for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
  {
    for (unsigned int j = 0; j < MeasurementVectorSize; ++j)
    {
      if (itk::Math::abs(matrixExpected[i][j] - matrix[i][j]) > epsilon)
      {
        std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
        return EXIT_FAILURE;
      }
    }
  }

  filter->SetWeights(weightArray);

  try
  {
    filter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << "Exception caught: " << excp << std::endl;
    return EXIT_FAILURE;
  }

  mean = filter->GetMean();
  matrix = filter->GetCovarianceMatrix();

  std::cout << "Mean: " << mean << std::endl;
  std::cout << "Covariance Matrix: " << matrix << std::endl;

  for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
  {
    if (itk::Math::abs(meanExpected3[i] - mean[i]) > epsilon)
    {
      std::cerr << "The computed mean value is incorrrect" << std::endl;
      return EXIT_FAILURE;
    }
  }

  for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
  {
    for (unsigned int j = 0; j < MeasurementVectorSize; ++j)
    {
      if (itk::Math::abs(matrixExpected[i][j] - matrix[i][j]) > epsilon)
      {
        std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
        return EXIT_FAILURE;
      }
    }
  }

  // Class is defined only for this function.
  class WeightedCovarianceSampleTestFunction1 : public itk::FunctionBase<MeasurementVectorType, double>
  {
  public:
    /** Standard class type aliases. */
    using Self = WeightedCovarianceSampleTestFunction1;
    using Pointer = itk::SmartPointer<Self>;

    /** Standard macros. */
    itkOverrideGetNameOfClassMacro(WeightedCovarianceSampleTestFunction1);
    itkNewMacro(Self);

    /** Input type */
    using InputType = MeasurementVectorType;

    /** Output type */
    using OutputType = double;

    /**Evaluate at the specified input position */
    OutputType
    Evaluate(const InputType & itkNotUsed(input)) const override
    {
      // MeasurementVectorType measurements;
      // set the weight factor of the measurement
      // vector with valuev[2, 2] to 0.5.
      return 1.0;
    }

  protected:
    WeightedCovarianceSampleTestFunction1() = default;
    ~WeightedCovarianceSampleTestFunction1() override = default;
  }; // end of class

  // set  a constant 1.0 weight using a function
  auto weightFunction = WeightedCovarianceSampleTestFunction1::New();
  filter->SetWeightingFunction(weightFunction);

  try
  {
    filter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << "Exception caught: " << excp << std::endl;
    return EXIT_FAILURE;
  }

  mean = filter->GetMean();
  matrix = filter->GetCovarianceMatrix();

  std::cout << "Mean: " << mean << std::endl;
  std::cout << "Covariance Matrix: " << matrix << std::endl;

  for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
  {
    if (itk::Math::abs(meanExpected3[i] - mean[i]) > epsilon)
    {
      std::cerr << "The computed mean value is incorrrect" << std::endl;
      return EXIT_FAILURE;
    }
  }

  for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
  {
    for (unsigned int j = 0; j < MeasurementVectorSize; ++j)
    {
      if (itk::Math::abs(matrixExpected[i][j] - matrix[i][j]) > epsilon)
      {
        std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
        return EXIT_FAILURE;
      }
    }
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}