1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkWeightedCovarianceSampleFilter.h"
#include "itkListSample.h"
constexpr unsigned int MeasurementVectorSize = 3;
unsigned int counter = 0;
using MeasurementVectorType = itk::FixedArray<float, MeasurementVectorSize>;
namespace itk
{
namespace Statistics
{
template <typename TSample>
class MyWeightedCovarianceSampleFilter : public WeightedCovarianceSampleFilter<TSample>
{
public:
using Self = MyWeightedCovarianceSampleFilter;
using Superclass = WeightedCovarianceSampleFilter<TSample>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using SampleType = TSample;
itkNewMacro(Self);
// method to invoke MakeOutput with index value different
// from one or zero. This is to check if an exception will be
// thrown
void
CreateInvalidOutput()
{
unsigned int index = 3;
Superclass::MakeOutput(index);
}
};
} // namespace Statistics
} // namespace itk
int
itkWeightedCovarianceSampleFilterTest(int, char *[])
{
std::cout << "WeightedCovarianceSampleFilter test \n \n";
using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;
using FilterType = itk::Statistics::MyWeightedCovarianceSampleFilter<SampleType>;
using MeasurementVectorRealType = FilterType::MeasurementVectorRealType;
using CovarianceMatrixType = FilterType::MatrixType;
auto filter = FilterType::New();
MeasurementVectorType measure;
auto sample = SampleType::New();
sample->SetMeasurementVectorSize(MeasurementVectorSize);
measure[0] = 4.00;
measure[1] = 2.00;
measure[2] = 0.60;
sample->PushBack(measure);
measure[0] = 4.20;
measure[1] = 2.10;
measure[2] = 0.59;
sample->PushBack(measure);
measure[0] = 3.90;
measure[1] = 2.00;
measure[2] = 0.58;
sample->PushBack(measure);
measure[0] = 4.30;
measure[1] = 2.10;
measure[2] = 0.62;
sample->PushBack(measure);
measure[0] = 4.10;
measure[1] = 2.20;
measure[2] = 0.63;
sample->PushBack(measure);
std::cout << filter->GetNameOfClass() << std::endl;
filter->Print(std::cout);
// Invoke update before adding an input. An exception should be
// thrown.
try
{
filter->Update();
std::cerr << "Exception should have been thrown since Update() is invoked without setting an input" << std::endl;
return EXIT_FAILURE;
}
catch (const itk::ExceptionObject & excp)
{
std::cout << "Expected exception caught: " << excp << std::endl;
}
if (filter->GetInput() != nullptr)
{
std::cerr << "GetInput() should return nullptr if the input has not been set" << std::endl;
return EXIT_FAILURE;
}
// test if exception is thrown if a derived class tries to create
// an invalid output
try
{
filter->CreateInvalidOutput();
std::cerr << "Exception should have been thrown: " << std::endl;
return EXIT_FAILURE;
}
catch (const itk::ExceptionObject & excp)
{
std::cout << "Expected exception caught: " << excp << std::endl;
}
filter->ResetPipeline();
// Run the filter with no weights
filter->SetInput(sample);
try
{
filter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cout << "Expected exception caught: " << excp << std::endl;
}
MeasurementVectorRealType mean = filter->GetMean();
CovarianceMatrixType matrix = filter->GetCovarianceMatrix();
std::cout << "Mean: " << mean << std::endl;
std::cout << "Covariance Matrix: " << matrix << std::endl;
// Check the results
double epsilon = 1e-2;
MeasurementVectorRealType meanExpected33;
itk::NumericTraits<MeasurementVectorRealType>::SetLength(meanExpected33, MeasurementVectorSize);
meanExpected33[0] = 4.10;
meanExpected33[1] = 2.08;
meanExpected33[2] = 0.604;
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
if (itk::Math::abs(meanExpected33[i] - mean[i]) > epsilon)
{
std::cerr << "The computed mean value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
CovarianceMatrixType matrixExpected33(MeasurementVectorSize, MeasurementVectorSize);
matrixExpected33[0][0] = 0.025;
matrixExpected33[0][1] = 0.0075;
matrixExpected33[0][2] = 0.00175;
matrixExpected33[1][0] = 0.0075;
matrixExpected33[1][1] = 0.0070;
matrixExpected33[1][2] = 0.00135;
matrixExpected33[2][0] = 0.00175;
matrixExpected33[2][1] = 0.00135;
matrixExpected33[2][2] = 0.00043;
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
for (unsigned int j = 0; j < MeasurementVectorSize; ++j)
if (itk::Math::abs(matrixExpected33[i][j] - matrix[i][j]) > epsilon)
{
std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
// Specify weight
using WeightArrayType = FilterType::WeightArrayType;
WeightArrayType weightArray(sample->Size());
weightArray.Fill(1.0);
filter->SetWeights(weightArray);
// run with equal weights
try
{
filter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << excp << std::endl;
return EXIT_FAILURE;
}
mean = filter->GetMean();
matrix = filter->GetCovarianceMatrix();
std::cout << "Mean: " << mean << std::endl;
std::cout << "Covariance Matrix: " << matrix << std::endl;
MeasurementVectorRealType meanExpected3;
itk::NumericTraits<MeasurementVectorRealType>::SetLength(meanExpected3, MeasurementVectorSize);
meanExpected3[0] = 4.10;
meanExpected3[1] = 2.08;
meanExpected3[2] = 0.604;
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
if (itk::Math::abs(meanExpected3[i] - mean[i]) > epsilon)
{
std::cerr << "The computed mean value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
CovarianceMatrixType matrixExpected(MeasurementVectorSize, MeasurementVectorSize);
matrixExpected[0][0] = 0.025;
matrixExpected[0][1] = 0.0075;
matrixExpected[0][2] = 0.00175;
matrixExpected[1][0] = 0.0075;
matrixExpected[1][1] = 0.0070;
matrixExpected[1][2] = 0.00135;
matrixExpected[2][0] = 0.00175;
matrixExpected[2][1] = 0.00135;
matrixExpected[2][2] = 0.00043;
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
for (unsigned int j = 0; j < MeasurementVectorSize; ++j)
{
if (itk::Math::abs(matrixExpected[i][j] - matrix[i][j]) > epsilon)
{
std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
}
filter->SetWeights(weightArray);
try
{
filter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << excp << std::endl;
return EXIT_FAILURE;
}
mean = filter->GetMean();
matrix = filter->GetCovarianceMatrix();
std::cout << "Mean: " << mean << std::endl;
std::cout << "Covariance Matrix: " << matrix << std::endl;
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
if (itk::Math::abs(meanExpected3[i] - mean[i]) > epsilon)
{
std::cerr << "The computed mean value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
for (unsigned int j = 0; j < MeasurementVectorSize; ++j)
{
if (itk::Math::abs(matrixExpected[i][j] - matrix[i][j]) > epsilon)
{
std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
}
// Class is defined only for this function.
class WeightedCovarianceSampleTestFunction1 : public itk::FunctionBase<MeasurementVectorType, double>
{
public:
/** Standard class type aliases. */
using Self = WeightedCovarianceSampleTestFunction1;
using Pointer = itk::SmartPointer<Self>;
/** Standard macros. */
itkOverrideGetNameOfClassMacro(WeightedCovarianceSampleTestFunction1);
itkNewMacro(Self);
/** Input type */
using InputType = MeasurementVectorType;
/** Output type */
using OutputType = double;
/**Evaluate at the specified input position */
OutputType
Evaluate(const InputType & itkNotUsed(input)) const override
{
// MeasurementVectorType measurements;
// set the weight factor of the measurement
// vector with valuev[2, 2] to 0.5.
return 1.0;
}
protected:
WeightedCovarianceSampleTestFunction1() = default;
~WeightedCovarianceSampleTestFunction1() override = default;
}; // end of class
// set a constant 1.0 weight using a function
auto weightFunction = WeightedCovarianceSampleTestFunction1::New();
filter->SetWeightingFunction(weightFunction);
try
{
filter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << excp << std::endl;
return EXIT_FAILURE;
}
mean = filter->GetMean();
matrix = filter->GetCovarianceMatrix();
std::cout << "Mean: " << mean << std::endl;
std::cout << "Covariance Matrix: " << matrix << std::endl;
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
if (itk::Math::abs(meanExpected3[i] - mean[i]) > epsilon)
{
std::cerr << "The computed mean value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
for (unsigned int j = 0; j < MeasurementVectorSize; ++j)
{
if (itk::Math::abs(matrixExpected[i][j] - matrix[i][j]) > epsilon)
{
std::cerr << "Computed covariance matrix value is incorrrect" << std::endl;
return EXIT_FAILURE;
}
}
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|