File: itkBayesianClassifierImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (241 lines) | stat: -rw-r--r-- 10,059 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBayesianClassifierImageFilter_h
#define itkBayesianClassifierImageFilter_h

#include "itkVectorImage.h"
#include "itkImageToImageFilter.h"
#include "itkMaximumDecisionRule.h"
#include "itkImageRegionIterator.h"

namespace itk
{
/**
 * \class BayesianClassifierImageFilter
 *
 * \brief Performs Bayesian Classification on an image.
 *
 * \par Inputs and Outputs
 * The input to this filter is an itk::VectorImage that represents pixel
 * memberships to 'n' classes. This image is conveniently generated by the
 * BayesianClassifierInitializationImageFilter. You may use that filter to
 * generate the membership images or specify your own.
 *
 * \par
 * The output of the filter is a label map (an image of unsigned char's is the
 * default.) with pixel values indicating the classes they correspond to. Pixels
 * with intensity 0 belong to the 0th class, 1 belong to the 1st class etc....
 * The classification is done by applying a Maximum decision rule to the posterior
 * image.
 *
 * \par Parameters
 * The filter optionally allows you to specify a prior image as well. The prior
 * image, if specified must be a VectorImage with as many components as the
 * number of classes. The posterior image is then generated by multiplying the
 * prior image with the membership image. If the prior image is not specified,
 * the posterior image is the same as the membership image. Another way to
 * look at it is that the priors default to having a uniform distribution over
 * the number of classes.
 * Posterior membership of a pixel = Prior * Membership
 *
 * \par
 * The filter optionally accepts a smoothing filter and number of iterations
 * associated with the smoothing filter.
 * The philosophy is that the filter allows you to iteratively
 * smooth the posteriors prior to applying the decision rule. It is hoped
 * that this would yield a better classification. The user will need to plug
 * in his own smoothing filter with all the parameters set.
 *
 * \par Template parameters
 * InputVectorImage, datatype of the output labelmap, precision of the posterior
 * image, precision of the prior image.
 *
 * \author John Melonakos, Georgia Tech
 *
 * \note
 * This work is part of the National Alliance for Medical Image Computing
 * (NAMIC), funded by the National Institutes of Health through the NIH Roadmap
 * for Medical Research, Grant U54 EB005149.
 *
 * \sa VectorImage
 * \sa BayesianClassifierInitializationImageFilter
 * \ingroup ClassificationFilters
 * \ingroup ITKClassifiers
 */
template <typename TInputVectorImage,
          typename TLabelsType = unsigned char,
          typename TPosteriorsPrecisionType = double,
          typename TPriorsPrecisionType = double>
class ITK_TEMPLATE_EXPORT BayesianClassifierImageFilter
  : public ImageToImageFilter<TInputVectorImage, Image<TLabelsType, TInputVectorImage::ImageDimension>>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(BayesianClassifierImageFilter);

  /** Standard class type aliases. */
  using Self = BayesianClassifierImageFilter;
  using Superclass = ImageToImageFilter<TInputVectorImage, Image<TLabelsType, TInputVectorImage::ImageDimension>>;

  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(BayesianClassifierImageFilter);

  /** Input and Output image types. */
  using typename Superclass::InputImageType;

  /** Dimension of the input image. */
  static constexpr unsigned int Dimension = InputImageType::ImageDimension;

  using OutputImageType = Image<TLabelsType, Self::Dimension>;
  using InputImagePointer = typename InputImageType::ConstPointer;
  using OutputImagePointer = typename OutputImageType::Pointer;
  using ImageRegionType = typename InputImageType::RegionType;

  /** Input and Output image iterators. */
  using InputImageIteratorType = ImageRegionConstIterator<InputImageType>;
  using OutputImageIteratorType = ImageRegionIterator<OutputImageType>;

  /** Pixel types. */
  using InputPixelType = typename InputImageType::PixelType;
  using OutputPixelType = typename OutputImageType::PixelType;

  /** Image Type and Pixel type for the images representing the Prior
   * probability of a pixel belonging to  a particular class. This image has
   * arrays as pixels, the number of elements in the array is the same as the
   * number of classes to be used. */
  using PriorsImageType = VectorImage<TPriorsPrecisionType, Self::Dimension>;
  using PriorsPixelType = typename PriorsImageType::PixelType;
  using PriorsImagePointer = typename PriorsImageType::Pointer;
  using PriorsImageIteratorType = ImageRegionConstIterator<PriorsImageType>;

  /** Image Type and Pixel type for the images representing the membership of a
   *  pixel to a particular class. This image has arrays as pixels, the number of
   *  elements in the array is the same as the number of classes to be used. */
  using MembershipImageType = TInputVectorImage;
  using MembershipPixelType = typename MembershipImageType::PixelType;
  using MembershipImagePointer = typename MembershipImageType::Pointer;
  using MembershipImageIteratorType = ImageRegionConstIterator<MembershipImageType>;

  /** Image Type and Pixel type for the images representing the Posterior
   * probability of a pixel belonging to a particular class. This image has
   * arrays as pixels, the number of elements in the array is the same as the
   * number of classes to be used. */
  using PosteriorsImageType = VectorImage<TPosteriorsPrecisionType, Self::Dimension>;
  using PosteriorsPixelType = typename PosteriorsImageType::PixelType;
  using PosteriorsImagePointer = typename PosteriorsImageType::Pointer;
  using PosteriorsImageIteratorType = ImageRegionIterator<PosteriorsImageType>;

  /** Decision rule to use for defining the label. */
  using DecisionRuleType = Statistics::MaximumDecisionRule;
  using DecisionRulePointer = DecisionRuleType::Pointer;

  using typename Superclass::DataObjectPointer;

  /** An image from a single component of the Posterior. */
  using ExtractedComponentImageType = itk::Image<TPosteriorsPrecisionType, Self::Dimension>;

  /** Optional Smoothing filter that will be applied to the Posteriors. */
  using SmoothingFilterType = ImageToImageFilter<ExtractedComponentImageType, ExtractedComponentImageType>;

  using SmoothingFilterPointer = typename SmoothingFilterType::Pointer;

  /** Set/Get the smoothing filter that may optionally be applied to the
   *  posterior image. */
  void
  SetSmoothingFilter(SmoothingFilterType *);
  itkGetConstMacro(SmoothingFilter, SmoothingFilterPointer);

  /** Set the priors image. */
  virtual void
  SetPriors(const PriorsImageType *);

  /** Number of iterations to apply the smoothing filter. */
  itkSetMacro(NumberOfSmoothingIterations, unsigned int);
  itkGetConstMacro(NumberOfSmoothingIterations, unsigned int);

  /** This is overloaded to create the Posteriors output image. */
  using DataObjectPointerArraySizeType = ProcessObject::DataObjectPointerArraySizeType;
  using Superclass::MakeOutput;
  DataObjectPointer
  MakeOutput(DataObjectPointerArraySizeType idx) override;

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(UnsignedIntConvertibleToLabelsCheck, (Concept::Convertible<unsigned int, TLabelsType>));
  itkConceptMacro(PosteriorsAdditiveOperatorsCheck, (Concept::AdditiveOperators<TPosteriorsPrecisionType>));
  itkConceptMacro(IntConvertibleToPosteriorsCheck, (Concept::Convertible<int, TPosteriorsPrecisionType>));
  itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<typename InputPixelType::ValueType>));
  itkConceptMacro(PosteriorsHasNumericTraitsCheck, (Concept::HasNumericTraits<TPosteriorsPrecisionType>));
  itkConceptMacro(PriorsHasNumericTraitsCheck, (Concept::HasNumericTraits<TPriorsPrecisionType>));
  itkConceptMacro(
    InputPriorsPosteriorsMultiplyOperatorCheck,
    (Concept::MultiplyOperator<typename InputPixelType::ValueType, PriorsPixelType, PosteriorsPixelType>));
  // End concept checking
#endif

protected:
  BayesianClassifierImageFilter();
  ~BayesianClassifierImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  void
  GenerateData() override;

  void
  GenerateOutputInformation() override;

  /** Compute the posteriors using the Bayes rule. If no priors are available,
   *  then the posteriors are just a copy of the memberships.
   *  Computes the labeled map for all combinations of conditions. */
  virtual void
  ComputeBayesRule();

  /** Normalize the posteriors and smooth them using a user-provided. */
  virtual void
  NormalizeAndSmoothPosteriors();

  /** Compute the labeled map based on the Maximum rule applied to the posteriors. */
  virtual void
  ClassifyBasedOnPosteriors();

  /** Get the Posteriors Image. */
  PosteriorsImageType *
  GetPosteriorImage();

private:
  bool m_UserProvidedPriors{ false };

  bool m_UserProvidedSmoothingFilter{ false };

  SmoothingFilterPointer m_SmoothingFilter{};

  unsigned int m_NumberOfSmoothingIterations{ 0 };
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkBayesianClassifierImageFilter.hxx"
#endif

#endif