File: itkBayesianClassifierImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (379 lines) | stat: -rw-r--r-- 13,238 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
/*=========================================================================
 *
 *  Portions of this file are subject to the VTK Toolkit Version 3 copyright.
 *
 *  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
 *
 *  For complete copyright, license and disclaimer of warranty information
 *  please refer to the NOTICE file at the top of the ITK source tree.
 *
 *=========================================================================*/
#ifndef itkBayesianClassifierImageFilter_hxx
#define itkBayesianClassifierImageFilter_hxx

#include "itkImageRegionConstIterator.h"

namespace itk
{

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  BayesianClassifierImageFilter()
  : m_SmoothingFilter(nullptr)

{
  this->SetNumberOfRequiredOutputs(2);
  PosteriorsImagePointer p = static_cast<PosteriorsImageType *>(this->MakeOutput(1).GetPointer());
  this->SetNthOutput(1, p.GetPointer());
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
void
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  GenerateData()
{
  // Set up input image
  const InputImageType * membershipImage = this->GetInput();

  // Set up general parameters
  const unsigned int numberOfClasses = membershipImage->GetVectorLength();

  if (numberOfClasses == 0)
  {
    itkExceptionMacro("The number of components in the input Membership image is Zero !");
  }

  this->AllocateOutputs();

  this->ComputeBayesRule();

  if (m_UserProvidedSmoothingFilter)
  {
    this->NormalizeAndSmoothPosteriors();
  }

  this->ClassifyBasedOnPosteriors();
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
typename BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  PosteriorsImageType *
  BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
    GetPosteriorImage()
{
  auto * ptr = dynamic_cast<PosteriorsImageType *>(this->ProcessObject::GetOutput(1));

  return ptr;
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
typename BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  DataObjectPointer
  BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
    MakeOutput(DataObjectPointerArraySizeType idx)
{
  if (idx == 1)
  {
    return PosteriorsImageType::New().GetPointer();
  }
  return Superclass::MakeOutput(idx);
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
void
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  GenerateOutputInformation()
{
  Superclass::GenerateOutputInformation();

  if (!this->GetPosteriorImage())
  {
    return;
  }

  // The vector length is part of the output information that must be
  // updated here
  this->GetPosteriorImage()->SetVectorLength(this->GetInput()->GetVectorLength());
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
void
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  ComputeBayesRule()
{
  itkDebugMacro("Computing Bayes Rule");
  const InputImageType * membershipImage = this->GetInput();

  ImageRegionType imageRegion = membershipImage->GetBufferedRegion();

  if (m_UserProvidedPriors)
  {
    const auto * priorsImage = dynamic_cast<const PriorsImageType *>(this->GetInput(1));

    if (priorsImage == nullptr)
    {
      itkExceptionMacro("Second input type does not correspond to expected Priors Image Type");
    }

    PosteriorsImageType * posteriorsImage = this->GetPosteriorImage();

    if (posteriorsImage == nullptr)
    {
      itkExceptionMacro("Second output type does not correspond to expected Posteriors Image Type");
    }

    InputImageIteratorType      itrMembershipImage(membershipImage, imageRegion);
    PriorsImageIteratorType     itrPriorsImage(priorsImage, imageRegion);
    PosteriorsImageIteratorType itrPosteriorsImage(posteriorsImage, imageRegion);

    itrMembershipImage.GoToBegin();
    itrPriorsImage.GoToBegin();

    const unsigned int numberOfClasses = membershipImage->GetVectorLength();

    itkDebugMacro("Computing Bayes Rule nclasses in membershipImage: " << numberOfClasses);

    while (!itrMembershipImage.IsAtEnd())
    {
      PosteriorsPixelType       posteriors(numberOfClasses);
      const PriorsPixelType     priors = itrPriorsImage.Get();
      const MembershipPixelType memberships = itrMembershipImage.Get();
      for (unsigned int i = 0; i < numberOfClasses; ++i)
      {
        posteriors[i] = static_cast<TPosteriorsPrecisionType>(memberships[i] * priors[i]);
      }
      itrPosteriorsImage.Set(posteriors);
      ++itrMembershipImage;
      ++itrPriorsImage;
      ++itrPosteriorsImage;
    }
  }
  else
  {
    PosteriorsImageType * posteriorsImage = this->GetPosteriorImage();

    if (posteriorsImage == nullptr)
    {
      itkExceptionMacro("Second output type does not correspond to expected Posteriors Image Type");
    }

    InputImageIteratorType      itrMembershipImage(membershipImage, imageRegion);
    PosteriorsImageIteratorType itrPosteriorsImage(posteriorsImage, imageRegion);

    itrMembershipImage.GoToBegin();
    itrPosteriorsImage.GoToBegin();

    while (!itrMembershipImage.IsAtEnd())
    {
      itrPosteriorsImage.Set(itrMembershipImage.Get());
      ++itrMembershipImage;
      ++itrPosteriorsImage;
    }
  }
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
void
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  SetSmoothingFilter(SmoothingFilterType * smoothingFilter)
{
  this->m_SmoothingFilter = smoothingFilter;
  this->m_UserProvidedSmoothingFilter = true;
  this->Modified();
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
void
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  SetPriors(const PriorsImageType * priors)
{
  this->ProcessObject::SetNthInput(1, const_cast<PriorsImageType *>(priors));
  this->m_UserProvidedPriors = true;
  this->Modified();
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
void
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  NormalizeAndSmoothPosteriors()
{
  PosteriorsImageIteratorType itrPosteriorImage(this->GetPosteriorImage(),
                                                this->GetPosteriorImage()->GetBufferedRegion());

  PosteriorsPixelType p;
  const unsigned int  numberOfClasses = this->GetPosteriorImage()->GetVectorLength();

  for (unsigned int iter = 0; iter < m_NumberOfSmoothingIterations; ++iter)
  {
    itrPosteriorImage.GoToBegin();
    while (!itrPosteriorImage.IsAtEnd())
    {
      p = itrPosteriorImage.Get();

      // Normalize P so the probability across components sums to 1
      TPosteriorsPrecisionType probability = 0;
      for (unsigned int i = 0; i < numberOfClasses; ++i)
      {
        probability += p[i];
      }
      // Two approaches available:
      // a) treat divide by zero as exception.
      // b) consider norm({0, 0,...}) = 0,
      // Option (b) was implemented
      if (probability > 0)
      {
        p /= probability;
      }
      itrPosteriorImage.Set(p);
      ++itrPosteriorImage;
    }

    for (unsigned int componentToExtract = 0; componentToExtract < numberOfClasses; ++componentToExtract)
    {
      // Create an auxiliary image to store one component of the vector image.
      // Smoothing filters typically can't handle multi-component images, so we
      // will extract each component and smooth it.
      auto extractedComponentImage = ExtractedComponentImageType::New();
      extractedComponentImage->CopyInformation(this->GetPosteriorImage());
      extractedComponentImage->SetBufferedRegion(this->GetPosteriorImage()->GetBufferedRegion());
      extractedComponentImage->SetRequestedRegion(this->GetPosteriorImage()->GetRequestedRegion());
      extractedComponentImage->Allocate();
      using IteratorType = itk::ImageRegionIterator<ExtractedComponentImageType>;

      itrPosteriorImage.GoToBegin();
      IteratorType it(extractedComponentImage, extractedComponentImage->GetBufferedRegion());

      it.GoToBegin();
      while (!itrPosteriorImage.IsAtEnd())
      {
        it.Set(itrPosteriorImage.Get()[componentToExtract]);
        ++it;
        ++itrPosteriorImage;
      }

      m_SmoothingFilter->SetInput(extractedComponentImage);
      m_SmoothingFilter->Modified(); // Force an update
      m_SmoothingFilter->Update();

      itrPosteriorImage.GoToBegin();

      IteratorType sit(m_SmoothingFilter->GetOutput(), m_SmoothingFilter->GetOutput()->GetBufferedRegion());
      sit.GoToBegin();
      while (!itrPosteriorImage.IsAtEnd())
      {
        PosteriorsPixelType posteriorPixel = itrPosteriorImage.Get();
        posteriorPixel[componentToExtract] = sit.Get();
        itrPosteriorImage.Set(posteriorPixel);
        ++sit;
        ++itrPosteriorImage;
      }
    }
  }
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
void
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  ClassifyBasedOnPosteriors()
{
  OutputImagePointer labels = this->GetOutput();

  ImageRegionType imageRegion = labels->GetBufferedRegion();

  PosteriorsImageType * posteriorsImage = this->GetPosteriorImage();

  if (posteriorsImage == nullptr)
  {
    itkExceptionMacro("Second output type does not correspond to expected Posteriors Image Type");
  }

  OutputImageIteratorType     itrLabelsImage(labels, imageRegion);
  PosteriorsImageIteratorType itrPosteriorsImage(posteriorsImage, imageRegion);

  DecisionRulePointer decisionRule = DecisionRuleType::New();

  itrLabelsImage.GoToBegin();
  itrPosteriorsImage.GoToBegin();

  typename PosteriorsImageType::PixelType         posteriorsPixel;
  typename DecisionRuleType::MembershipVectorType posteriorsVector;
  posteriorsPixel = itrPosteriorsImage.Get();
  posteriorsVector.reserve(posteriorsPixel.Size());
  posteriorsVector.insert(posteriorsVector.begin(), posteriorsPixel.Size(), 0.0);
  while (!itrLabelsImage.IsAtEnd())
  {
    posteriorsPixel = itrPosteriorsImage.Get();
    std::copy_n(posteriorsPixel.GetDataPointer(), posteriorsPixel.Size(), posteriorsVector.begin());
    itrLabelsImage.Set(static_cast<TLabelsType>(decisionRule->Evaluate(posteriorsVector)));
    ++itrLabelsImage;
    ++itrPosteriorsImage;
  }
}

template <typename TInputVectorImage,
          typename TLabelsType,
          typename TPosteriorsPrecisionType,
          typename TPriorsPrecisionType>
void
BayesianClassifierImageFilter<TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType>::
  PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "UserProvidedPriors: " << (m_UserProvidedPriors ? "On" : "Off") << std::endl;
  os << indent << "UserProvidedSmoothingFilter " << (m_UserProvidedSmoothingFilter ? "On" : "Off") << std::endl;

  itkPrintSelfObjectMacro(SmoothingFilter);

  os << indent << "NumberOfSmoothingIterations: " << m_NumberOfSmoothingIterations << std::endl;
}
} // end namespace itk

#endif