1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkBayesianClassifierInitializationImageFilter_h
#define itkBayesianClassifierInitializationImageFilter_h
#include "itkVectorImage.h"
#include "itkVectorContainer.h"
#include "itkImageToImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkMembershipFunctionBase.h"
namespace itk
{
/**
* \class BayesianClassifierInitializationImageFilter
*
* \brief This filter is intended to be used as a helper class to
* initialize the BayesianClassifierImageFilter.
*
* \par
* The goal of this filter is to generate a membership image that indicates
* the membership of each pixel to each class. These membership images are fed
* as input to the Bayesian classifier filter.
*
* \par Parameters
* Number of classes: This defines the number of classes, which will determine
* the number of membership images that will be generated. The user must specify
* this.
*
* \par
* Membership functions: The user can optionally plugin in any membership function.
* The number of membership functions plugged in should be the
* same as the number of classes. If the user does not supply membership
* functions, the filter will generate membership functions for you. These
* functions are Gaussian density functions centered around 'n' pixel intensity
* values, \f$ I_k \f$. These 'n' values are obtained by running K-means on the
* image. In other words, the default behaviour of the filter is to generate
* Gaussian mixture model for the input image.
*
* \par Inputs and Outputs
* The filter takes a scalar Image as input and generates a VectorImage, each
* component \f$ c \f$ of which represents memberships of each pixel to the
* class \f$ c \f$.
*
* \par Template parameters
* This filter is templated over the input image type and the data type used
* to represent the probabilities (defaults to float).
*
* \author John Melonakos, Georgia Tech
*
* \note
* This work is part of the National Alliance for Medical Image Computing
* (NAMIC), funded by the National Institutes of Health through the NIH Roadmap
* for Medical Research, Grant U54 EB005149.
*
* \sa BayesianClassifierImageFilter
* \sa VectorImage
* \ingroup ClassificationFilters
* \ingroup ITKClassifiers
*/
template <typename TInputImage, typename TProbabilityPrecisionType = float>
class ITK_TEMPLATE_EXPORT BayesianClassifierInitializationImageFilter
: public ImageToImageFilter<TInputImage, VectorImage<TProbabilityPrecisionType, TInputImage::ImageDimension>>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(BayesianClassifierInitializationImageFilter);
/** Standard class type aliases. */
using Self = BayesianClassifierInitializationImageFilter;
using InputImageType = TInputImage;
using ProbabilityPrecisionType = TProbabilityPrecisionType;
/** Dimension of the input image */
static constexpr unsigned int Dimension = InputImageType::ImageDimension;
using OutputImageType = VectorImage<ProbabilityPrecisionType, Self::Dimension>;
using Superclass = ImageToImageFilter<InputImageType, OutputImageType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(BayesianClassifierInitializationImageFilter);
/** Input image iterators */
using InputImageIteratorType = ImageRegionConstIterator<InputImageType>;
/** Pixel types. */
using InputPixelType = typename InputImageType::PixelType;
using OutputPixelType = typename OutputImageType::PixelType;
/** Image Type and Pixel type for the images representing the membership of a
* pixel to a particular class. This image has arrays as pixels, the number of
* elements in the array is the same as the number of classes to be used. */
using MembershipImageType = VectorImage<ProbabilityPrecisionType, Self::Dimension>;
using MembershipPixelType = typename MembershipImageType::PixelType;
using MembershipImagePointer = typename MembershipImageType::Pointer;
using MembershipImageIteratorType = ImageRegionIterator<MembershipImageType>;
/** Type of the Measurement */
using MeasurementVectorType = Vector<InputPixelType, 1>;
/** Type of the density functions */
using MembershipFunctionType = Statistics::MembershipFunctionBase<MeasurementVectorType>;
using MembershipFunctionPointer = typename MembershipFunctionType::Pointer;
/** Membership function container */
using MembershipFunctionContainerType = VectorContainer<unsigned int, MembershipFunctionPointer>;
using MembershipFunctionContainerPointer = typename MembershipFunctionContainerType::Pointer;
/** Method to set/get the density functions. Here you can set a vector
* container of density functions. If no density functions are specified,
* the filter will create ones for you. These default density functions
* are Gaussian density functions centered around the K-means of the
* input image. */
virtual void
SetMembershipFunctions(MembershipFunctionContainerType * membershipFunction);
itkGetModifiableObjectMacro(MembershipFunctionContainer, MembershipFunctionContainerType);
/** Set/Get methods for the number of classes. The user must supply this. */
itkSetMacro(NumberOfClasses, unsigned int);
itkGetConstMacro(NumberOfClasses, unsigned int);
void
GenerateOutputInformation() override;
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(InputMultiplyOperatorCheck, (Concept::MultiplyOperator<InputPixelType>));
itkConceptMacro(DoubleConvertibleToProbabilityCheck, (Concept::Convertible<double, TProbabilityPrecisionType>));
itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<InputPixelType>));
itkConceptMacro(ProbabilityHasNumericTraitsCheck, (Concept::HasNumericTraits<TProbabilityPrecisionType>));
itkConceptMacro(DoublePlusInputCheck, (Concept::AdditiveOperators<double, InputPixelType>));
// End concept checking
#endif
protected:
BayesianClassifierInitializationImageFilter();
~BayesianClassifierInitializationImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Initialize the membership functions. This will be called only if the membership
* function hasn't already been set. This method initializes membership functions
* using Gaussian density functions centered around the means computed using
* Kmeans.
*/
virtual void
InitializeMembershipFunctions();
/** Here is where the prior and membership probability vector images are
created.*/
void
GenerateData() override;
private:
bool m_UserSuppliesMembershipFunctions{ false };
unsigned int m_NumberOfClasses{ 0 };
typename MembershipFunctionContainerType::Pointer m_MembershipFunctionContainer{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkBayesianClassifierInitializationImageFilter.hxx"
#endif
#endif
|