1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkImageClassifierBase_hxx
#define itkImageClassifierBase_hxx
namespace itk
{
template <typename TInputImage, typename TClassifiedImage>
void
ImageClassifierBase<TInputImage, TClassifiedImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
itkPrintSelfObjectMacro(InputImage);
itkPrintSelfObjectMacro(ClassifiedImage);
}
template <typename TInputImage, typename TClassifiedImage>
void
ImageClassifierBase<TInputImage, TClassifiedImage>::GenerateData()
{
this->Classify();
}
template <typename TInputImage, typename TClassifiedImage>
void
ImageClassifierBase<TInputImage, TClassifiedImage>::Classify()
{
ClassifiedImagePointer classifiedImage = this->GetClassifiedImage();
// Check if the an output buffer has been allocated
if (!classifiedImage)
{
this->Allocate();
// To trigger the pipeline process
this->Modified();
}
// Set the iterators and the pixel type definition for the input image
InputImageConstPointer inputImage = this->GetInputImage();
InputImageConstIterator inIt(inputImage, inputImage->GetBufferedRegion());
// Set the iterators and the pixel type definition for the classified image
classifiedImage = this->GetClassifiedImage();
ClassifiedImageIterator classifiedIt(classifiedImage, classifiedImage->GetBufferedRegion());
// Set up the vector to store the image data
InputImagePixelType inputImagePixel;
ClassifiedImagePixelType outputClassifiedLabel;
// Set up the storage containers to record the probability
// measures for each class.
unsigned int numberOfClasses = this->GetNumberOfMembershipFunctions();
std::vector<double> discriminantScores;
discriminantScores.resize(numberOfClasses);
unsigned int classLabel;
unsigned int classIndex;
// support progress methods/callbacks
SizeValueType totalPixels = inputImage->GetBufferedRegion().GetNumberOfPixels();
SizeValueType updateVisits = totalPixels / 10;
if (updateVisits < 1)
{
updateVisits = 1;
}
int k = 0;
for (inIt.GoToBegin(); !inIt.IsAtEnd(); ++inIt, ++classifiedIt, ++k)
{
if (!(k % updateVisits))
{
this->UpdateProgress(static_cast<float>(k) / static_cast<float>(totalPixels));
}
// Read the input vector
inputImagePixel = inIt.Get();
for (classIndex = 0; classIndex < numberOfClasses; ++classIndex)
{
discriminantScores[classIndex] = (this->GetMembershipFunction(classIndex))->Evaluate(inputImagePixel);
}
classLabel = static_cast<unsigned int>(this->GetDecisionRule()->Evaluate(discriminantScores));
outputClassifiedLabel = ClassifiedImagePixelType(classLabel);
classifiedIt.Set(outputClassifiedLabel);
}
}
template <typename TInputImage, typename TClassifiedImage>
void
ImageClassifierBase<TInputImage, TClassifiedImage>::Allocate()
{
InputImageConstPointer inputImage = this->GetInputImage();
InputImageSizeType inputImageSize = inputImage->GetBufferedRegion().GetSize();
ClassifiedImagePointer classifiedImage = TClassifiedImage::New();
this->SetClassifiedImage(classifiedImage);
const typename TClassifiedImage::RegionType classifiedImageRegion(inputImageSize);
classifiedImage->SetLargestPossibleRegion(classifiedImageRegion);
classifiedImage->SetBufferedRegion(classifiedImageRegion);
classifiedImage->Allocate();
}
template <typename TInputImage, typename TClassifiedImage>
std::vector<double>
ImageClassifierBase<TInputImage, TClassifiedImage>::GetPixelMembershipValue(const InputImagePixelType inputImagePixel)
{
unsigned int numberOfClasses = this->GetNumberOfClasses();
std::vector<double> pixelMembershipValue(numberOfClasses);
for (unsigned int classIndex = 0; classIndex < numberOfClasses; ++classIndex)
{
pixelMembershipValue[classIndex] = (this->GetMembershipFunction(classIndex))->Evaluate(inputImagePixel);
}
return pixelMembershipValue;
}
} // namespace itk
#endif
|