File: itkImageGaussianModelEstimator.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (260 lines) | stat: -rw-r--r-- 8,885 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkImageGaussianModelEstimator_hxx
#define itkImageGaussianModelEstimator_hxx

#include "itkMath.h"
#include "itkNumericTraits.h"
#include "itkMakeUniqueForOverwrite.h"

namespace itk
{

template <typename TInputImage, typename TMembershipFunction, typename TTrainingImage>
void
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>::PrintSelf(std::ostream & os,
                                                                                         Indent         indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "NumberOfSamples: " << m_NumberOfSamples << std::endl;
  os << indent << "Means: " << m_Means << std::endl;

  os << indent << "Covariance: ";
  if (m_Covariance != nullptr)
  {
    os << *m_Covariance.get() << std::endl;
  }
  else
  {
    os << "(null): " << std::endl;
  }

  itkPrintSelfObjectMacro(TrainingImage);
}

template <typename TInputImage, typename TMembershipFunction, typename TTrainingImage>
void
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>::GenerateData()
{
  this->EstimateModels();
}

template <typename TInputImage, typename TMembershipFunction, typename TTrainingImage>
void
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>::EstimateModels()
{
  // Do some error checking
  InputImageConstPointer inputImage = this->GetInputImage();

  // Check if the training and input image dimensions are the same
  if (static_cast<int>(TInputImage::ImageDimension) != static_cast<int>(TTrainingImage::ImageDimension))
  {
    throw ExceptionObject(__FILE__, __LINE__, "Training and input image dimensions are not the same.", ITK_LOCATION);
  }

  InputImageSizeType inputImageSize = inputImage->GetBufferedRegion().GetSize();

  TrainingImageConstPointer trainingImage = this->GetTrainingImage();

  using TrainingImageSizeType = InputImageSizeType;
  TrainingImageSizeType trainingImageSize = trainingImage->GetBufferedRegion().GetSize();

  // Check if size of the two inputs are the same
  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
  {
    if (inputImageSize[i] != trainingImageSize[i])
    {
      throw ExceptionObject(
        __FILE__, __LINE__, "Input image size is not the same as the training image size.", ITK_LOCATION);
    }
  }

  // Set up the gaussian membership calculators
  unsigned int numberOfModels = this->GetNumberOfModels();

  // Call local function to estimate mean variances of the various
  // class labels in the training set.
  // The statistics class functions have not been used since all the
  // class statistics are calculated simultaneously here.
  this->EstimateGaussianModelParameters();

  // Populate the membership functions for all the classes
  MembershipFunctionPointer                             membershipFunction;
  typename MembershipFunctionType::MeanVectorType       tmean;
  typename MembershipFunctionType::CovarianceMatrixType tcov;

  NumericTraits<typename MembershipFunctionType::MeanVectorType>::SetLength(tmean, VectorDimension);
  for (unsigned int classIndex = 0; classIndex < numberOfModels; ++classIndex)
  {
    membershipFunction = TMembershipFunction::New();

    // Convert to the datatype used for the mean
    for (unsigned int i = 0; i < VectorDimension; ++i)
    {
      tmean[i] = m_Means.get(classIndex, i);
    }
    membershipFunction->SetMean(tmean);

    tcov = m_Covariance[classIndex]; // convert cov for membership fn
    membershipFunction->SetCovariance(tcov);

    this->AddMembershipFunction(membershipFunction);
  }
}

template <typename TInputImage, typename TMembershipFunction, typename TTrainingImage>
void
ImageGaussianModelEstimator<TInputImage, TMembershipFunction, TTrainingImage>::EstimateGaussianModelParameters()
{
  // Set the iterators and the pixel type definition for the input image
  InputImageConstPointer  inputImage = this->GetInputImage();
  InputImageConstIterator inIt(inputImage, inputImage->GetBufferedRegion());

  // Set the iterators and the pixel type definition for the training image
  TrainingImageConstPointer trainingImage = this->GetTrainingImage();

  TrainingImageConstIterator trainingImageIt(trainingImage, trainingImage->GetBufferedRegion());

  unsigned int numberOfModels = (this->GetNumberOfModels());

  // Set up the matrices to hold the means and the covariance for the
  // training data

  m_Means.set_size(numberOfModels, VectorDimension);
  m_Means.fill(0);

  m_NumberOfSamples.set_size(numberOfModels, 1);
  m_NumberOfSamples.fill(0);

  // Number of covariance matrices are equal to the number of classes
  m_Covariance = make_unique_for_overwrite<MatrixType[]>(numberOfModels);

  for (unsigned int i = 0; i < numberOfModels; ++i)
  {
    m_Covariance[i].set_size(VectorDimension, VectorDimension);
    m_Covariance[i].fill(0);
  }

  for (inIt.GoToBegin(); !inIt.IsAtEnd(); ++inIt, ++trainingImageIt)
  {
    auto classIndex = static_cast<unsigned int>(trainingImageIt.Get());

    // Training data assumed =1 band; also the class indices go
    // from 1, 2, ..., n while the corresponding memory goes from
    // 0, 1, ..., n-1.

    // Ensure that the training data is labelled appropriately
    if (classIndex > numberOfModels)
    {
      throw ExceptionObject(__FILE__, __LINE__);
    }

    if (classIndex > 0)
    {
      m_NumberOfSamples[classIndex][0] += 1;
      InputImagePixelType inImgVec = inIt.Get();

      for (unsigned int band_x = 0; band_x < VectorDimension; ++band_x)
      {
        m_Means[classIndex][band_x] += inImgVec[band_x];
        for (unsigned int band_y = 0; band_y <= band_x; ++band_y)
        {
          m_Covariance[classIndex][band_x][band_y] += inImgVec[band_x] * inImgVec[band_y];
        }
      }
    }
  }

  // Loop through the classes to calculate the means and covariance
  for (unsigned int classIndex = 0; classIndex < numberOfModels; ++classIndex)
  {
    if (Math::NotAlmostEquals(m_NumberOfSamples[classIndex][0], 0.0))
    {
      for (unsigned int i = 0; i < VectorDimension; ++i)
      {
        m_Means[classIndex][i] /= m_NumberOfSamples[classIndex][0];
      }
    }

    else
    {
      for (unsigned int i = 0; i < VectorDimension; ++i)
      {
        m_Means[classIndex][i] = 0;
      }
    }

    if (Math::NotAlmostEquals((m_NumberOfSamples[classIndex][0] - 1), 0.0))
    {
      for (unsigned int band_x = 0; band_x < VectorDimension; ++band_x)
      {
        for (unsigned int band_y = 0; band_y <= band_x; ++band_y)
        {
          m_Covariance[classIndex][band_x][band_y] /= (m_NumberOfSamples[classIndex][0] - 1);
        }
      }
    }

    else
    {
      for (unsigned int band_x = 0; band_x < VectorDimension; ++band_x)
      {
        for (unsigned int band_y = 0; band_y <= band_x; ++band_y)
        {
          m_Covariance[classIndex][band_x][band_y] = 0;
        }
      }
    }

    MatrixType tempMeanSq;
    tempMeanSq.set_size(VectorDimension, VectorDimension);
    tempMeanSq.fill(0);

    for (unsigned int band_x = 0; band_x < VectorDimension; ++band_x)
    {
      for (unsigned int band_y = 0; band_y <= band_x; ++band_y)
      {
        tempMeanSq[band_x][band_y] = m_Means[classIndex][band_x] * m_Means[classIndex][band_y];
      }
    }

    if (Math::NotAlmostEquals((m_NumberOfSamples[classIndex][0] - 1), 0.0))
    {
      tempMeanSq *= (m_NumberOfSamples[classIndex][0] / (m_NumberOfSamples[classIndex][0] - 1));
    }
    m_Covariance[classIndex] -= tempMeanSq;

    // Fill the rest of the covariance matrix and make it symmetric
    if (m_NumberOfSamples[classIndex][0] > 0)
    {
      auto lastInX = static_cast<unsigned int>(VectorDimension - 1);
      auto upperY = static_cast<unsigned int>(VectorDimension);
      for (unsigned int band_x = 0; band_x < lastInX; ++band_x)
      {
        for (unsigned int band_y = band_x + 1; band_y < upperY; ++band_y)
        {
          m_Covariance[classIndex][band_x][band_y] = m_Covariance[classIndex][band_y][band_x];
        } // end band_y loop
      }   // end band_x loop
    }     // end if loop
  }       // end class index loop
}
} // end namespace itk

#endif