1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScalarImageKmeansImageFilter_h
#define itkScalarImageKmeansImageFilter_h
#include "itkKdTree.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkSampleClassifierFilter.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkMinimumDecisionRule.h"
#include "itkRegionOfInterestImageFilter.h"
#include <vector>
namespace itk
{
/**
* \class ScalarImageKmeansImageFilter
* \brief Classifies the intensity values of a scalar image using the K-Means algorithm.
*
* Given an input image with scalar values, it uses the K-Means statistical
* classifier in order to define labels for every pixel in the image. The
* filter is templated over the type of the input image. The output image is
* predefined as having the same dimension of the input image and pixel type
* unsigned char, under the assumption that the classifier will generate less
* than 256 classes.
*
* You may want to look also at the RelabelImageFilter that may be used as a
* postprocessing stage, in particular if you are interested in ordering the
* labels by their relative size in number of pixels.
*
* \sa Image
* \sa ImageKmeansModelEstimator
* \sa KdTreeBasedKmeansEstimator, WeightedCentroidKdTreeGenerator, KdTree
* \sa RelabelImageFilter
*
* \ingroup ClassificationFilters
* \ingroup ITKClassifiers
*
* \sphinx
* \sphinxexample{Segmentation/Classifiers/ClusterPixelsInGrayscaleImage,Cluster Pixels In Grayscale Image}
* \sphinxexample{Segmentation/Classifiers/KMeansClustering,K-Means Clustering}
* \endsphinx
*/
template <typename TInputImage, typename TOutputImage = Image<unsigned char, TInputImage::ImageDimension>>
class ITK_TEMPLATE_EXPORT ScalarImageKmeansImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ScalarImageKmeansImageFilter);
/** Extract dimension from input and output image. */
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
/** Convenient type alias for simplifying declarations. */
using InputImageType = TInputImage;
using OutputImageType = TOutputImage;
/** Standard class type aliases. */
using Self = ScalarImageKmeansImageFilter;
using Superclass = ImageToImageFilter<InputImageType, OutputImageType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ScalarImageKmeansImageFilter);
/** Image type alias support */
using InputPixelType = typename InputImageType::PixelType;
using OutputPixelType = typename OutputImageType::PixelType;
/** Type used for representing the Mean values. */
using RealPixelType = typename NumericTraits<InputPixelType>::RealType;
/** Create a List from the scalar image. */
using AdaptorType = itk::Statistics::ImageToListSampleAdaptor<InputImageType>;
/** Define the Measurement vector type from the AdaptorType. */
using MeasurementVectorType = typename AdaptorType::MeasurementVectorType;
using MembershipFunctionType = itk::Statistics::DistanceToCentroidMembershipFunction<MeasurementVectorType>;
using ClassifierType = itk::Statistics::SampleClassifierFilter<AdaptorType>;
using DecisionRuleType = itk::Statistics::MinimumDecisionRule;
using ClassLabelVectorType = typename ClassifierType::ClassLabelVectorType;
using MembershipFunctionVectorType = typename ClassifierType::MembershipFunctionVectorType;
using MembershipFunctionOriginType = typename MembershipFunctionType::CentroidType;
using MembershipFunctionPointer = typename MembershipFunctionType::Pointer;
/** Create the K-d tree structure. */
using TreeGeneratorType = itk::Statistics::WeightedCentroidKdTreeGenerator<AdaptorType>;
using TreeType = typename TreeGeneratorType::KdTreeType;
using EstimatorType = itk::Statistics::KdTreeBasedKmeansEstimator<TreeType>;
using ParametersType = typename EstimatorType::ParametersType;
using ImageRegionType = typename InputImageType::RegionType;
using RegionOfInterestFilterType = RegionOfInterestImageFilter<InputImageType, InputImageType>;
/** Add a new class to the classification by specifying its initial mean. */
void
AddClassWithInitialMean(RealPixelType mean);
/** Return the array of Means found after the classification. */
itkGetConstReferenceMacro(FinalMeans, ParametersType);
/** Set/Get the UseNonContiguousLabels flag. When this is set to false the
* labels are numbered contiguously, like in {0,1,3..N}. When the flag is set
* to true, the labels are selected in order to span the dynamic range of the
* output image. This last option is useful when the output image is intended
* only for display. The default value is false. */
itkSetMacro(UseNonContiguousLabels, bool);
itkGetConstReferenceMacro(UseNonContiguousLabels, bool);
itkBooleanMacro(UseNonContiguousLabels);
/** Set Region method to constrain classification to a certain region */
void
SetImageRegion(const ImageRegionType & region);
/** Get the region over which the statistics will be computed */
itkGetConstReferenceMacro(ImageRegion, ImageRegionType);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<InputPixelType>));
// End concept checking
#endif
protected:
ScalarImageKmeansImageFilter();
~ScalarImageKmeansImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** This method runs the statistical methods that identify the means of the
* classes and the use the distances to those means in order to label the
* image pixels.
* \sa ImageToImageFilter::GenerateData()
*/
void
GenerateData() override;
/* See superclass for doxygen. This methods additionally checks that
* the number of means is not 0. */
void
VerifyPreconditions() ITKv5_CONST override;
private:
using MeansContainer = std::vector<RealPixelType>;
MeansContainer m_InitialMeans{};
ParametersType m_FinalMeans{};
bool m_UseNonContiguousLabels{ false };
ImageRegionType m_ImageRegion{};
bool m_ImageRegionDefined{ false };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkScalarImageKmeansImageFilter.hxx"
#endif
#endif
|