File: itkScalarImageKmeansImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (238 lines) | stat: -rw-r--r-- 7,563 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkScalarImageKmeansImageFilter_hxx
#define itkScalarImageKmeansImageFilter_hxx

#include "itkImageRegionExclusionIteratorWithIndex.h"

#include "itkDistanceToCentroidMembershipFunction.h"

#include "itkProgressReporter.h"
#include "itkPrintHelper.h"

namespace itk
{
template <typename TInputImage, typename TOutputImage>
ScalarImageKmeansImageFilter<TInputImage, TOutputImage>::ScalarImageKmeansImageFilter()

  = default;

template <typename TInputImage, typename TOutputImage>
void
ScalarImageKmeansImageFilter<TInputImage, TOutputImage>::SetImageRegion(const ImageRegionType & region)
{
  m_ImageRegion = region;
  m_ImageRegionDefined = true;
}

template <typename TInputImage, typename TOutputImage>
void
ScalarImageKmeansImageFilter<TInputImage, TOutputImage>::VerifyPreconditions() ITKv5_CONST
{
  this->Superclass::VerifyPreconditions();

  if (this->m_InitialMeans.empty())
  {
    itkExceptionMacro("At least one InitialMean is required.");
  }
}

template <typename TInputImage, typename TOutputImage>
void
ScalarImageKmeansImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  auto adaptor = AdaptorType::New();

  // Setup the regions here if a sub-region has been specified to restrict
  // classification on. Since this is not ThreadedGenerateData, we are
  // safe...
  if (m_ImageRegionDefined)
  {
    auto regionOfInterestFilter = RegionOfInterestFilterType::New();
    regionOfInterestFilter->SetRegionOfInterest(m_ImageRegion);
    regionOfInterestFilter->SetInput(this->GetInput());
    regionOfInterestFilter->Update();
    adaptor->SetImage(regionOfInterestFilter->GetOutput());
  }
  else
  {
    adaptor->SetImage(this->GetInput());
  }

  auto treeGenerator = TreeGeneratorType::New();

  treeGenerator->SetSample(adaptor);
  treeGenerator->SetBucketSize(16);
  treeGenerator->Update();

  auto estimator = EstimatorType::New();

  const size_t numberOfClasses = this->m_InitialMeans.size();

  ParametersType initialMeans(numberOfClasses);
  for (unsigned int cl = 0; cl < numberOfClasses; ++cl)
  {
    initialMeans[cl] = this->m_InitialMeans[cl];
  }

  estimator->SetParameters(initialMeans);

  estimator->SetKdTree(treeGenerator->GetOutput());
  estimator->SetMaximumIteration(200);
  estimator->SetCentroidPositionChangesThreshold(0.0);
  estimator->StartOptimization();

  this->m_FinalMeans = estimator->GetParameters();

  using RegionType = typename InputImageType::RegionType;

  // Now classify the samples
  auto decisionRule = DecisionRuleType::New();
  auto classifier = ClassifierType::New();

  classifier->SetDecisionRule(decisionRule);
  classifier->SetInput(adaptor);

  classifier->SetNumberOfClasses(numberOfClasses);

  ClassLabelVectorType classLabels;
  classLabels.resize(numberOfClasses);

  // Spread the labels over the intensity range
  unsigned int labelInterval = 1;
  if (m_UseNonContiguousLabels)
  {
    labelInterval = (NumericTraits<OutputPixelType>::max() / numberOfClasses) - 1;
  }

  unsigned int                 label = 0;
  MembershipFunctionVectorType membershipFunctions;

  for (unsigned int k = 0; k < numberOfClasses; ++k)
  {
    classLabels[k] = label;
    label += labelInterval;
    MembershipFunctionPointer    membershipFunction = MembershipFunctionType::New();
    MembershipFunctionOriginType origin(adaptor->GetMeasurementVectorSize());
    origin[0] = this->m_FinalMeans[k]; // A scalar image has a MeasurementVector
                                       // of dimension 1
    membershipFunction->SetCentroid(origin);
    const MembershipFunctionType * constMembershipFunction = membershipFunction;
    membershipFunctions.push_back(constMembershipFunction);
  }

  typename ClassifierType::MembershipFunctionVectorObjectPointer membershipFunctionsObject =
    ClassifierType::MembershipFunctionVectorObjectType::New();
  membershipFunctionsObject->Set(membershipFunctions);
  classifier->SetMembershipFunctions(membershipFunctionsObject);

  using ClassLabelVectorObjectType = typename ClassifierType::ClassLabelVectorObjectType;
  auto classLabelsObject = ClassLabelVectorObjectType::New();
  classLabelsObject->Set(classLabels);
  classifier->SetClassLabels(classLabelsObject);

  // Execute the actual classification
  classifier->Update();

  // Now classify the pixels
  typename OutputImageType::Pointer outputPtr = this->GetOutput();

  using ImageIterator = ImageRegionIterator<OutputImageType>;

  outputPtr->SetBufferedRegion(outputPtr->GetRequestedRegion());
  outputPtr->Allocate();

  RegionType region = outputPtr->GetBufferedRegion();

  // If we constrained the classification to a region, label only pixels within
  // the region. Label outside pixels as numberOfClasses + 1
  if (m_ImageRegionDefined)
  {
    region = m_ImageRegion;
  }

  ImageIterator pixel(outputPtr, region);
  pixel.GoToBegin();

  using ClassifierOutputType = typename ClassifierType::MembershipSampleType;
  const ClassifierOutputType * membershipSample = classifier->GetOutput();

  using LabelIterator = typename ClassifierOutputType::ConstIterator;

  LabelIterator iter = membershipSample->Begin();
  LabelIterator end = membershipSample->End();

  while (iter != end)
  {
    pixel.Set(iter.GetClassLabel());
    ++iter;
    ++pixel;
  }

  if (m_ImageRegionDefined)
  {
    // If a region is defined to constrain classification to, we need to label
    // pixels outside with numberOfClasses + 1.
    using ExclusionImageIteratorType = ImageRegionExclusionIteratorWithIndex<OutputImageType>;
    ExclusionImageIteratorType exIt(outputPtr, outputPtr->GetBufferedRegion());
    exIt.SetExclusionRegion(region);
    exIt.GoToBegin();
    if (m_UseNonContiguousLabels)
    {
      OutputPixelType outsideLabel = labelInterval * numberOfClasses;
      while (!exIt.IsAtEnd())
      {
        exIt.Set(outsideLabel);
        ++exIt;
      }
    }
    else
    {
      while (!exIt.IsAtEnd())
      {
        exIt.Set(numberOfClasses);
        ++exIt;
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
ScalarImageKmeansImageFilter<TInputImage, TOutputImage>::AddClassWithInitialMean(RealPixelType mean)
{
  this->m_InitialMeans.push_back(mean);
}

template <typename TInputImage, typename TOutputImage>
void
ScalarImageKmeansImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  using namespace print_helper;

  Superclass::PrintSelf(os, indent);

  os << indent << "InitialMeans: " << m_InitialMeans << std::endl;
  os << indent << "FinalMeans: " << m_FinalMeans << std::endl;
  os << indent << "UseContiguousLabels: " << m_UseNonContiguousLabels << std::endl;
  os << indent << "ImageRegion: " << m_ImageRegion << std::endl;
  os << indent << "ImageRegionDefined: " << m_ImageRegionDefined << std::endl;
}
} // end namespace itk

#endif