1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkBayesianClassifierImageFilter.h"
#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkImageToImageFilter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkPipelineMonitorImageFilter.h"
#include "itkTestingMacros.h"
template <typename TInputImage, typename TBayesianClassifierInitializer, typename TBayesianClassifierFilter>
int
TestBayesianClassifierImageFilterWithNoPriors(typename TInputImage::Pointer image,
unsigned int numberOfClasses,
unsigned int numberOfSmoothingIterations,
char * outputFilename)
{
using BayesianClassifierInitializerType = TBayesianClassifierInitializer;
using BayesianClassifierFilterType = TBayesianClassifierFilter;
auto bayesianInitializer = BayesianClassifierInitializerType::New();
bayesianInitializer->SetInput(image);
bayesianInitializer->SetNumberOfClasses(numberOfClasses);
ITK_TEST_SET_GET_VALUE(numberOfClasses, bayesianInitializer->GetNumberOfClasses());
auto bayesianClassifier = BayesianClassifierFilterType::New();
bayesianClassifier->SetInput(bayesianInitializer->GetOutput());
bayesianClassifier->SetNumberOfSmoothingIterations(numberOfSmoothingIterations);
ITK_TEST_SET_GET_VALUE(numberOfSmoothingIterations, bayesianClassifier->GetNumberOfSmoothingIterations());
using ExtractedComponentImageType = typename BayesianClassifierFilterType::ExtractedComponentImageType;
using SmoothingFilterType =
itk::GradientAnisotropicDiffusionImageFilter<ExtractedComponentImageType, ExtractedComponentImageType>;
auto smoother = SmoothingFilterType::New();
smoother->SetNumberOfIterations(1);
smoother->SetTimeStep(0.125);
smoother->SetConductanceParameter(3);
bayesianClassifier->SetSmoothingFilter(smoother);
ITK_TEST_SET_GET_VALUE(smoother, bayesianClassifier->GetSmoothingFilter().GetPointer());
using MonitorFilterType = itk::PipelineMonitorImageFilter<TInputImage>;
auto monitor = MonitorFilterType::New();
monitor->SetInput(bayesianClassifier->GetOutput());
using ClassifierOutputImageType = typename BayesianClassifierFilterType::OutputImageType;
using OutputImageType = itk::Image<unsigned char, TInputImage::ImageDimension>;
using RescalerType = itk::RescaleIntensityImageFilter<ClassifierOutputImageType, OutputImageType>;
auto rescaler = RescalerType::New();
rescaler->SetInput(monitor->GetOutput());
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
using WriterType = itk::ImageFileWriter<OutputImageType>;
auto writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(rescaler->GetOutput());
ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());
if (!monitor->VerifyAllInputCanNotStream())
{
std::cout << "Pipeline did not execute as expected!" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
template <typename TInputImage, typename TBayesianClassifierInitializer, typename TBayesianClassifierFilter>
int
TestBayesianClassifierImageFilterWithPriors(typename TInputImage::Pointer image,
typename TBayesianClassifierFilter::PriorsImageType::Pointer priorsImage,
unsigned int numberOfClasses,
unsigned int numberOfSmoothingIterations,
char * outputFilename)
{
using BayesianClassifierInitializerType = TBayesianClassifierInitializer;
using BayesianClassifierFilterType = TBayesianClassifierFilter;
auto bayesianInitializer = BayesianClassifierInitializerType::New();
bayesianInitializer->SetInput(image);
bayesianInitializer->SetNumberOfClasses(numberOfClasses);
auto bayesianClassifier = BayesianClassifierFilterType::New();
bayesianClassifier->SetInput(bayesianInitializer->GetOutput());
bayesianClassifier->SetPriors(priorsImage);
bayesianClassifier->SetNumberOfSmoothingIterations(numberOfSmoothingIterations);
ITK_TEST_SET_GET_VALUE(numberOfSmoothingIterations, bayesianClassifier->GetNumberOfSmoothingIterations());
using ExtractedComponentImageType = typename BayesianClassifierFilterType::ExtractedComponentImageType;
using SmoothingFilterType =
itk::GradientAnisotropicDiffusionImageFilter<ExtractedComponentImageType, ExtractedComponentImageType>;
auto smoother = SmoothingFilterType::New();
smoother->SetNumberOfIterations(1);
smoother->SetTimeStep(0.125);
smoother->SetConductanceParameter(3);
bayesianClassifier->SetSmoothingFilter(smoother);
ITK_TEST_SET_GET_VALUE(smoother, bayesianClassifier->GetSmoothingFilter().GetPointer());
using MonitorFilterType = itk::PipelineMonitorImageFilter<TInputImage>;
auto monitor = MonitorFilterType::New();
monitor->SetInput(bayesianClassifier->GetOutput());
using ClassifierOutputImageType = typename BayesianClassifierFilterType::OutputImageType;
using OutputImageType = itk::Image<unsigned char, TInputImage::ImageDimension>;
using RescalerType = itk::RescaleIntensityImageFilter<ClassifierOutputImageType, OutputImageType>;
auto rescaler = RescalerType::New();
rescaler->SetInput(monitor->GetOutput());
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
using WriterType = itk::ImageFileWriter<OutputImageType>;
auto writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(rescaler->GetOutput());
ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());
if (!monitor->VerifyAllInputCanNotStream())
{
std::cout << "Pipeline did not execute as expected!" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
int
itkBayesianClassifierImageFilterTest(int argc, char * argv[])
{
if (argc < 6)
{
std::cerr << "Usage: " << std::endl;
std::cerr << itkNameOfTestExecutableMacro(argv)
<< " inputImageFile outputImageFile numberOfClasses smoothingIterations testPriors" << std::endl;
return EXIT_FAILURE;
}
// Set up reader
constexpr unsigned int Dimension = 2;
using InputPixelType = unsigned char;
using InputImageType = itk::Image<InputPixelType, Dimension>;
using ReaderType = itk::ImageFileReader<InputImageType>;
using BayesianInitializerType = itk::BayesianClassifierInitializationImageFilter<InputImageType>;
auto bayesianInitializer = BayesianInitializerType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(
bayesianInitializer, BayesianClassifierInitializationImageFilter, ImageToImageFilter);
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
ITK_TRY_EXPECT_NO_EXCEPTION(reader->Update());
ReaderType::OutputImageType::Pointer inputImage = reader->GetOutput();
char * outputFilename = argv[2];
unsigned int numberOfClasses = std::stoi(argv[3]);
unsigned int numberOfSmoothingIterations = std::stoi(argv[4]);
bool testPriors = std::stoi(argv[5]);
using LabelType = unsigned char;
using PriorType = float;
using PosteriorType = float;
using InitialLabelImageType = BayesianInitializerType::OutputImageType;
using BayesianClassifierFilterType =
itk::BayesianClassifierImageFilter<InitialLabelImageType, LabelType, PosteriorType, PriorType>;
auto bayesianClassifier = BayesianClassifierFilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(bayesianClassifier, BayesianClassifierImageFilter, ImageToImageFilter);
bool testStatus = EXIT_SUCCESS;
if (!testPriors)
{
std::cout << "Running the filter with no Priors set..." << std::endl;
testStatus = TestBayesianClassifierImageFilterWithNoPriors<ReaderType::OutputImageType,
BayesianInitializerType,
BayesianClassifierFilterType>(
inputImage, numberOfClasses, numberOfSmoothingIterations, outputFilename);
}
else
{
std::cout << "Running the filter with Priors set..." << std::endl;
using PriorsImageType = BayesianClassifierFilterType::PriorsImageType;
const InputImageType * priorsInputImage = reader->GetOutput();
auto priorsImage = PriorsImageType::New();
priorsImage->CopyInformation(priorsInputImage);
priorsImage->SetRegions(inputImage->GetLargestPossibleRegion());
priorsImage->SetNumberOfComponentsPerPixel(5);
priorsImage->AllocateInitialized();
testStatus = TestBayesianClassifierImageFilterWithPriors<ReaderType::OutputImageType,
BayesianInitializerType,
BayesianClassifierFilterType>(
inputImage, priorsImage, numberOfClasses, numberOfSmoothingIterations, outputFilename);
}
// TEST valid image type combinations.
// The hypothesis is that the vector element type for
// TestInitialLabelImageType must be the same as for TestPriorType
{
constexpr unsigned int TestDimension = 2;
using TestLabelType = unsigned char;
using TestPosteriorType = float;
using TestPriorType = float;
using TestInitialLabelImageType = itk::VectorImage<TestPriorType, TestDimension>;
using ClassifierFilterType =
itk::BayesianClassifierImageFilter<TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType>;
auto filter = ClassifierFilterType::New();
if (filter.IsNull())
{
return EXIT_FAILURE;
}
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, BayesianClassifierImageFilter, ImageToImageFilter);
}
{
constexpr unsigned int TestDimension = 2;
using TestLabelType = unsigned char;
using TestPosteriorType = float;
using TestPriorType = float;
using TestInitialLabelImageType = itk::VectorImage<double, TestDimension>; // The element type MUST be the PriorType
using ClassifierFilterType =
itk::BayesianClassifierImageFilter<TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType>;
auto filter = ClassifierFilterType::New();
if (filter.IsNull())
{
return EXIT_FAILURE;
}
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, BayesianClassifierImageFilter, ImageToImageFilter);
}
{
constexpr unsigned int TestDimension = 2;
using TestLabelType = unsigned char;
using TestPosteriorType = float;
using TestPriorType = double;
using TestInitialLabelImageType =
itk::VectorImage<TestPriorType, TestDimension>; // The element type MUST be the PriorType
using ClassifierFilterType =
itk::BayesianClassifierImageFilter<TestInitialLabelImageType, TestLabelType, TestPosteriorType, TestPriorType>;
auto filter = ClassifierFilterType::New();
if (filter.IsNull())
{
return EXIT_FAILURE;
}
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, BayesianClassifierImageFilter, ImageToImageFilter);
}
std::cout << "Test passed." << std::endl;
return testStatus;
}
|