File: itkImageClassifierFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (295 lines) | stat: -rw-r--r-- 9,985 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageClassifierFilter.h"
#include "itkGaussianMixtureModelComponent.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"
#include "itkMaximumDecisionRule.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkNormalVariateGenerator.h"
#include "itkImageFileWriter.h"
#include "itkTestingMacros.h"

// This program tests the ImageClassifierFilter. The test uses the
// ExpectationMaximizationMixtureModelEstimator to estimaete membership
// function parameters.
int
itkImageClassifierFilterTest(int argc, char * argv[])
{
  if (argc < 2)
  {
    std::cerr << "Missing command line arguments: " << itkNameOfTestExecutableMacro(argv) << '\t'
              << "ClassifiedOutputImage name" << std::endl;
    return EXIT_FAILURE;
  }
  constexpr unsigned int MeasurementVectorSize = 1;
  using MeasurementComponentType = double;
  constexpr unsigned int numberOfClasses = 2;
  using InputPixelType = itk::FixedArray<MeasurementComponentType, MeasurementVectorSize>;

  constexpr unsigned int ImageDimension = 2;
  using InputImageType = itk::Image<InputPixelType, ImageDimension>;

  using OutputPixelType = unsigned char;

  using OutputImageType = itk::Image<OutputPixelType, ImageDimension>;

  // Generate an image with pixel intensities generated from two normal
  // distributions
  using NormalGeneratorType = itk::Statistics::NormalVariateGenerator;
  auto normalGenerator = NormalGeneratorType::New();
  normalGenerator->Initialize(101);

  auto image = InputImageType::New();

  InputImageType::IndexType start;
  InputImageType::SizeType  size;

  start.Fill(0);
  size.Fill(512);

  InputImageType::RegionType region(start, size);
  image->SetRegions(region);
  image->Allocate();

  // Fill the first half of the input image with pixel intensities
  // gnerated from a normal distribution defined by the following parameters
  double mean = 10.5;
  double standardDeviation = 5.0;

  InputImageType::IndexType index;
  unsigned int              halfSize = size[1] / 2;

  for (unsigned int y = 0; y < halfSize; ++y)
  {
    index[1] = y;
    for (unsigned int x = 0; x < size[0]; ++x)
    {
      index[0] = x;
      InputPixelType value;
      value[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
      // std::cout << "Index = \t" << index << '\t' << value << std::endl;
      image->SetPixel(index, value);
    }
  }

  // Pixel intensities generated from the second normal distribution
  double mean2 = 200.5;
  double standardDeviation2 = 20.0;

  for (unsigned int y = halfSize; y < size[1]; ++y)
  {
    index[1] = y;
    for (unsigned int x = 0; x < size[0]; ++x)
    {
      index[0] = x;
      InputPixelType value;
      value[0] = (normalGenerator->GetVariate() * standardDeviation2) + mean2;
      // std::cout << "Index = \t" << index << '\t' << value << std::endl;
      image->SetPixel(index, value);
    }
  }

  // Instantiate an image to list sample adaptor to pass the sample list
  // to EM estimator
  using ImageToListSampleAdaptorType = itk::Statistics::ImageToListSampleAdaptor<InputImageType>;

  auto sample = ImageToListSampleAdaptorType::New();
  sample->SetImage(image);

  // Use EM estimator to estimate gaussian membership functions
  using EstimatorType = itk::Statistics::ExpectationMaximizationMixtureModelEstimator<ImageToListSampleAdaptorType>;
  using ComponentType = itk::Statistics::GaussianMixtureModelComponent<ImageToListSampleAdaptorType>;

  /* Preparing the gaussian mixture components */
  using ParametersType = itk::Array<double>;
  std::vector<ParametersType> initialParameters(numberOfClasses);
  ParametersType              params(2);
  params[0] = 8.0;
  params[1] = 0.1;
  initialParameters[0] = params;

  params[0] = 170.0;
  params[1] = 2.0;
  initialParameters[1] = params;

  using ComponentPointer = ComponentType::Pointer;
  std::vector<ComponentPointer> components;
  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    components.push_back(ComponentType::New());
    (components[i])->SetSample(sample);
    (components[i])->SetParameters(initialParameters[i]);
  }

  /* Estimating */
  auto estimator = EstimatorType::New();
  estimator->SetSample(sample);

  int maximumIteration = 200;
  estimator->SetMaximumIteration(maximumIteration);

  itk::Array<double> initialProportions(numberOfClasses);
  initialProportions[0] = 0.5;
  initialProportions[1] = 0.5;

  estimator->SetInitialProportions(initialProportions);

  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    estimator->AddComponent((ComponentType::Superclass *)(components[i]).GetPointer());
  }

  estimator->Update();

  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    std::cout << "Cluster[" << i << ']' << std::endl;
    std::cout << "    Parameters:" << std::endl;
    std::cout << "         " << (components[i])->GetFullParameters() << std::endl;
    std::cout << "    Proportion: ";
    std::cout << "         " << (estimator->GetProportions())[i] << std::endl;
  }


  using ImageClassifierFilterType =
    itk::Statistics::ImageClassifierFilter<ImageToListSampleAdaptorType, InputImageType, OutputImageType>;
  auto filter = ImageClassifierFilterType::New();

  using ClassLabelVectorObjectType = ImageClassifierFilterType::ClassLabelVectorObjectType;
  using ClassLabelVectorType = ImageClassifierFilterType::ClassLabelVectorType;

  auto classLabelsObject = ClassLabelVectorObjectType::New();

  // Add class labels
  ClassLabelVectorType & classLabelVector = classLabelsObject->Get();

  using ClassLabelType = ImageClassifierFilterType::ClassLabelType;

  ClassLabelType class1 = 0;
  classLabelVector.push_back(class1);

  ClassLabelType class2 = 255;
  classLabelVector.push_back(class2);

  // Set a decision rule type
  using DecisionRuleType = itk::Statistics::MaximumDecisionRule;

  auto decisionRule = DecisionRuleType::New();

  const ImageClassifierFilterType::MembershipFunctionVectorObjectType * membershipFunctionsObject =
    estimator->GetOutput();

  /* Print out estimated parameters of the membership function */

  const ImageClassifierFilterType::MembershipFunctionVectorType membershipFunctions = membershipFunctionsObject->Get();

  auto begin = membershipFunctions.begin();

  auto end = membershipFunctions.end();

  ImageClassifierFilterType::MembershipFunctionVectorType::const_iterator functionIter;

  functionIter = begin;

  unsigned int counter = 1;
  std::cout << "Estimator membership function output " << std::endl;
  while (functionIter != end)
  {
    ImageClassifierFilterType::MembershipFunctionPointer membershipFunction = *functionIter;
    const auto *                                         gaussianMemberShpFunction =
      dynamic_cast<const EstimatorType::GaussianMembershipFunctionType *>(membershipFunction.GetPointer());
    std::cout << "\tMembership function:\t " << counter << std::endl;
    std::cout << "\t\tMean=" << gaussianMemberShpFunction->GetMean() << std::endl;
    std::cout << "\t\tCovariance matrix=" << gaussianMemberShpFunction->GetCovariance() << std::endl;
    functionIter++;
    counter++;
  }

  // Set membership functions weight array
  const ImageClassifierFilterType::MembershipFunctionsWeightsArrayObjectType * weightArrayObjects =
    estimator->GetMembershipFunctionsWeightsArray();
  const ImageClassifierFilterType::MembershipFunctionsWeightsArrayType weightsArray = weightArrayObjects->Get();

  std::cout << "Estimator membership function Weight/proporation output: " << std::endl;
  for (unsigned int i = 0; i < weightsArray.Size(); ++i)
  {
    std::cout << "Membership function: \t" << i << '\t' << weightsArray[i] << std::endl;
  }

  filter->SetImage(image);

  filter->SetNumberOfClasses(numberOfClasses);

  if (filter->GetNumberOfClasses() != numberOfClasses)
  {
    std::cerr << "Get/SetNumberOfClasses error" << std::endl;
    return EXIT_FAILURE;
  }

  filter->SetClassLabels(classLabelsObject);
  filter->SetMembershipFunctions(membershipFunctionsObject);
  filter->SetMembershipFunctionsWeightsArray(weightArrayObjects);

  // Run the filter without setting a decision rule. An exception should be
  // thrown
  try
  {
    filter->Update();
    std::cerr << "Attempting to run a classification without setting decision rule, should throw an exception"
              << std::endl;
    return EXIT_FAILURE;
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << excp << std::endl;
  }


  filter->SetDecisionRule(decisionRule);

  // Test Set/GetDecisionRule method
  if (filter->GetDecisionRule() != decisionRule)
  {
    std::cerr << "Set/GetDecisionRule method error \n" << std::endl;
    return EXIT_FAILURE;
  }

  try
  {
    filter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
  }

  // Write out the classified image
  using OutputImageWriterType = itk::ImageFileWriter<OutputImageType>;
  auto outputImageWriter = OutputImageWriterType::New();
  outputImageWriter->SetFileName(argv[1]);
  outputImageWriter->SetInput(filter->GetOutput());
  outputImageWriter->Update();

  // Check if the measurement vectors are correctly labelled.
  // TODO

  std::cerr << "[PASSED]" << std::endl;
  return EXIT_SUCCESS;
}