File: itkSampleClassifierFilterTest6.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (207 lines) | stat: -rw-r--r-- 6,923 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkListSample.h"
#include "itkSampleClassifierFilter.h"
#include "itkMinimumDecisionRule.h"
#include "itkNormalVariateGenerator.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"


// run sample classifier using std::vector type measurement vector
int
itkSampleClassifierFilterTest6(int, char *[])
{

  constexpr unsigned int numberOfComponents = 1;
  using MeasurementType = float;

  constexpr unsigned int numberOfClasses = 2;

  using MeasurementVectorType = std::vector<MeasurementType>;
  using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

  using FilterType = itk::Statistics::SampleClassifierFilter<SampleType>;

  using GeneratorType = itk::Statistics::WeightedCentroidKdTreeGenerator<SampleType>;
  using EstimatorType = itk::Statistics::KdTreeBasedKmeansEstimator<GeneratorType::KdTreeType>;

  // Generate a sample list
  auto sample = SampleType::New();
  sample->SetMeasurementVectorSize(numberOfComponents);

  using NormalGeneratorType = itk::Statistics::NormalVariateGenerator;
  auto normalGenerator = NormalGeneratorType::New();
  normalGenerator->Initialize(101);

  // Populate the list with samples from two normal distributions

  EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType mean1;
  itk::NumericTraits<EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType>::SetLength(
    mean1, numberOfComponents);
  mean1[0] = 10.5;

  EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType mean2;
  itk::NumericTraits<EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType>::SetLength(
    mean2, numberOfComponents);
  mean2[0] = 200.5;

  MeasurementVectorType mv;
  itk::NumericTraits<MeasurementVectorType>::SetLength(mv, numberOfComponents);
  double       mean = mean1[0];
  double       standardDeviation = 0.1;
  unsigned int numberOfSampleEachClass = 10;

  // Add sample from the first gaussian
  for (unsigned int i = 0; i < numberOfSampleEachClass; ++i)
  {
    mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
    sample->PushBack(mv);
  }

  // Add samples from the second gaussian
  mean = mean2[0];
  standardDeviation = 0.1;
  for (unsigned int i = 0; i < numberOfSampleEachClass; ++i)
  {
    mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
    sample->PushBack(mv);
  }


  using ClassLabelVectorObjectType = FilterType::ClassLabelVectorObjectType;
  using ClassLabelVectorType = FilterType::ClassLabelVectorType;

  auto classLabelsObject = ClassLabelVectorObjectType::New();

  /* Creating k-d tree */
  auto generator = GeneratorType::New();
  generator->SetSample(sample);
  unsigned int bucketSize = 1;
  generator->SetBucketSize(bucketSize);
  generator->GenerateData();

  /* Searching kmeans */
  auto estimator = EstimatorType::New();

  itk::Array<double> initialMeans(2);
  initialMeans[0] = 5;
  initialMeans[1] = 70;
  estimator->SetParameters(initialMeans);
  unsigned int maximumIteration = 100;
  estimator->SetMaximumIteration(maximumIteration);
  estimator->SetKdTree(generator->GetOutput());
  estimator->SetCentroidPositionChangesThreshold(0.0);
  estimator->StartOptimization();
  // EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();

  // Add class labels
  ClassLabelVectorType & classLabelVector = classLabelsObject->Get();

  using ClassLabelType = FilterType::ClassLabelType;

  ClassLabelType class1 = 0;
  classLabelVector.push_back(class1);

  ClassLabelType class2 = 1;
  classLabelVector.push_back(class2);

  // Set a decision rule type
  using DecisionRuleType = itk::Statistics::MinimumDecisionRule;

  auto decisionRule = DecisionRuleType::New();

  const FilterType::MembershipFunctionVectorObjectType * membershipFunctionsObject = estimator->GetOutput();

  /* Print out estimated parameters of the membership function */

  const FilterType::MembershipFunctionVectorType membershipFunctions = membershipFunctionsObject->Get();

  auto begin = membershipFunctions.begin();

  auto end = membershipFunctions.end();

  FilterType::MembershipFunctionVectorType::const_iterator functionIter;

  functionIter = begin;


  unsigned int counter = 1;
  while (functionIter != end)
  {
    FilterType::MembershipFunctionPointer membershipFunction = *functionIter;
    const auto *                          distanceMemberShpFunction =
      dynamic_cast<const EstimatorType::DistanceToCentroidMembershipFunctionType *>(membershipFunction.GetPointer());
    std::cout << "Centroid of the " << counter << " membership function " << distanceMemberShpFunction->GetCentroid()
              << std::endl;
    functionIter++;
    counter++;
  }

  // Instantiate and pass all the required inputs to the filter
  auto filter = FilterType::New();

  filter->SetInput(sample);
  filter->SetNumberOfClasses(numberOfClasses);
  filter->SetClassLabels(classLabelsObject);
  filter->SetDecisionRule(decisionRule);
  filter->SetMembershipFunctions(membershipFunctionsObject);

  try
  {
    filter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
  }

  // Check if the measurement vectors are correctly labelled.
  const FilterType::MembershipSampleType *        membershipSample = filter->GetOutput();
  FilterType::MembershipSampleType::ConstIterator iter = membershipSample->Begin();

  unsigned int sampleCounter = 0;
  while (iter != membershipSample->End())
  {
    if (sampleCounter < numberOfSampleEachClass)
    {
      if (iter.GetClassLabel() != class1)
      {
        std::cerr << "Classification error: " << sampleCounter << '\t' << iter.GetClassLabel() << "\tclass1=" << class1
                  << std::endl;
        return EXIT_FAILURE;
      }
    }
    else
    {
      if (iter.GetClassLabel() != class2)
      {
        std::cerr << "Classification error: " << sampleCounter << '\t' << iter.GetClassLabel() << "\tclass2=" << class2
                  << std::endl;
        return EXIT_FAILURE;
      }
    }
    ++iter;
    ++sampleCounter;
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}