File: itkSampleClassifierFilterTest7.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (328 lines) | stat: -rw-r--r-- 10,934 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <fstream>

#include "itkPointSetToListSampleAdaptor.h"
#include "itkSampleClassifierFilter.h"
#include "itkMaximumDecisionRule.h"

#include "itkGaussianMixtureModelComponent.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"
#include "itkTestingMacros.h"

// Sample classifier test using Gaussian Mixture model and EM estimator
int
itkSampleClassifierFilterTest7(int argc, char * argv[])
{
  using PointSetType = itk::PointSet<double, 2>;
  using DataSampleType = itk::Statistics::PointSetToListSampleAdaptor<PointSetType>;
  using EstimatorType = itk::Statistics::ExpectationMaximizationMixtureModelEstimator<DataSampleType>;
  using ComponentType = itk::Statistics::GaussianMixtureModelComponent<DataSampleType>;

  if (argc < 3)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
    std::cout << "Input_data_sample Target_data_sample" << std::endl;
    return EXIT_FAILURE;
  }

  constexpr int          maximumIteration = 200;
  constexpr double       minStandardDeviation = 28.54746;
  constexpr unsigned int numberOfClasses = 2;
  using ParametersType = itk::Array<double>;
  std::vector<ParametersType> trueParameters(numberOfClasses);
  ParametersType              params(6);
  params[0] = 99.261;
  params[1] = 100.078;
  params[2] = 814.95741;
  params[3] = 38.40308;
  params[4] = 38.40308;
  params[5] = 817.64446;
  trueParameters[0] = params;

  params[0] = 200.1;
  params[1] = 201.3;
  params[2] = 859.785295;
  params[3] = -3.617316;
  params[4] = -3.617316;
  params[5] = 848.991508;
  trueParameters[1] = params;

  // only the means are altered
  std::vector<ParametersType> initialParameters(numberOfClasses);
  params[0] = 80.0;
  params[1] = 80.0;
  params[2] = 814.95741;
  params[3] = 38.40308;
  params[4] = 38.40308;
  params[5] = 817.64446;
  initialParameters[0] = params;

  params[0] = 180.0;
  params[1] = 180.0;
  params[2] = 859.785295;
  params[3] = -3.617316;
  params[4] = -3.617316;
  params[5] = 848.991508;
  initialParameters[1] = params;

  itk::Array<double> trueProportions(numberOfClasses);
  trueProportions[0] = 0.5;
  trueProportions[1] = 0.5;

  itk::Array<double> initialProportions(numberOfClasses);
  initialProportions[0] = 0.5;
  initialProportions[1] = 0.5;

  /* Loading point data */
  auto                                 pointSet = PointSetType::New();
  PointSetType::PointsContainerPointer pointsContainer = PointSetType::PointsContainer::New();
  constexpr int                        dataSizeBig = 2000;
  pointsContainer->Reserve(dataSizeBig);
  pointSet->SetPoints(pointsContainer);

  PointSetType::PointsContainerIterator p_iter = pointsContainer->Begin();
  PointSetType::PointType               point;

  char * const  dataFileName = argv[1];
  std::ifstream dataStream(dataFileName);
  if (!dataStream)
  {
    std::cout << "ERROR: fail to open the data file." << std::endl;
    return EXIT_FAILURE;
  }

  while (p_iter != pointsContainer->End())
  {
    for (unsigned int i = 0; i < PointSetType::PointDimension; ++i)
    {
      double temp;
      dataStream >> temp;
      point[i] = temp;
    }
    p_iter.Value() = point;
    ++p_iter;
  }

  dataStream.close();

  /* Importing the point set to the sample */
  auto sample = DataSampleType::New();

  sample->SetPointSet(pointSet);

  /* Preparing the gaussian mixture components */
  using ComponentPointer = ComponentType::Pointer;
  std::vector<ComponentPointer> components;
  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    components.push_back(ComponentType::New());
    (components[i])->SetSample(sample);
    (components[i])->SetParameters(initialParameters[i]);
  }

  /* Estimating */
  auto estimator = EstimatorType::New();
  estimator->SetSample(sample);
  estimator->SetMaximumIteration(maximumIteration);
  estimator->SetInitialProportions(initialProportions);

  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    estimator->AddComponent((ComponentType::Superclass *)(components[i]).GetPointer());
  }

  estimator->Update();

  std::cout << "DEBUG: current iteration = " << estimator->GetCurrentIteration() << std::endl;

  bool passed = true;
  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    std::cout << "Cluster[" << i << ']' << std::endl;
    std::cout << "    Parameters:" << std::endl;
    std::cout << "         " << (components[i])->GetFullParameters() << std::endl;
    std::cout << "    Proportion: ";
    std::cout << "         " << (estimator->GetProportions())[i] << std::endl;
    double             displacement = 0.0;
    const unsigned int measurementVectorSize = sample->GetMeasurementVectorSize();
    for (unsigned int j = 0; j < measurementVectorSize; ++j)
    {
      double temp;
      temp = (components[i])->GetFullParameters()[j] - trueParameters[i][j];
      displacement += (temp * temp);
    }
    displacement = std::sqrt(displacement);
    std::cout << "    Mean displacement: " << std::endl;
    std::cout << "        " << displacement << std::endl << std::endl;
    if (displacement > (minStandardDeviation / 100.0) * 3)
    {
      passed = false;
    }
  }

  // Set up a classifier
  using FilterType = itk::Statistics::SampleClassifierFilter<DataSampleType>;
  auto filter = FilterType::New();

  using ClassLabelVectorObjectType = FilterType::ClassLabelVectorObjectType;
  using ClassLabelVectorType = FilterType::ClassLabelVectorType;

  auto classLabelsObject = ClassLabelVectorObjectType::New();

  // Add class labels
  ClassLabelVectorType & classLabelVector = classLabelsObject->Get();

  using ClassLabelType = FilterType::ClassLabelType;

  ClassLabelType class1 = 0;
  classLabelVector.push_back(class1);

  ClassLabelType class2 = 1;
  classLabelVector.push_back(class2);

  // Set a decision rule type
  using DecisionRuleType = itk::Statistics::MaximumDecisionRule;

  auto decisionRule = DecisionRuleType::New();

  const FilterType::MembershipFunctionVectorObjectType * membershipFunctionsObject = estimator->GetOutput();

  /* Print out estimated parameters of the membership function */

  const FilterType::MembershipFunctionVectorType membershipFunctions = membershipFunctionsObject->Get();

  auto begin = membershipFunctions.begin();

  auto end = membershipFunctions.end();

  FilterType::MembershipFunctionVectorType::const_iterator functionIter;

  functionIter = begin;

  unsigned int counter = 1;
  std::cout << "Estimator membership function output " << std::endl;
  while (functionIter != end)
  {
    FilterType::MembershipFunctionPointer membershipFunction = *functionIter;
    const auto *                          gaussianMemberShpFunction =
      dynamic_cast<const EstimatorType::GaussianMembershipFunctionType *>(membershipFunction.GetPointer());
    std::cout << "\tMembership function:\t " << counter << std::endl;
    std::cout << "\t\tMean=" << gaussianMemberShpFunction->GetMean() << std::endl;
    std::cout << "\t\tCovariance matrix=" << gaussianMemberShpFunction->GetCovariance() << std::endl;
    functionIter++;
    counter++;
  }

  // Set membership functions weight array
  const FilterType::MembershipFunctionsWeightsArrayObjectType * weightArrayObjects =
    estimator->GetMembershipFunctionsWeightsArray();
  const FilterType::MembershipFunctionsWeightsArrayType weightsArray = weightArrayObjects->Get();

  std::cout << "Estimator membership function Weight/proporation output: " << std::endl;
  for (unsigned int i = 0; i < weightsArray.Size(); ++i)
  {
    std::cout << "Membership function: \t" << i << '\t' << weightsArray[i] << std::endl;
  }

  char *        targetFileName = argv[2];
  std::ifstream dataTargetStream(targetFileName);
  if (!dataTargetStream)
  {
    std::cout << "ERROR: fail to open the target data file." << std::endl;
    return EXIT_FAILURE;
  }

  auto                                 pointSet2 = PointSetType::New();
  PointSetType::PointsContainerPointer pointsContainer2 = PointSetType::PointsContainer::New();
  constexpr int                        dataSizeSmall = 200;
  pointsContainer2->Reserve(dataSizeSmall);
  pointSet2->SetPoints(pointsContainer2);

  p_iter = pointsContainer2->Begin();
  while (p_iter != pointsContainer2->End())
  {
    for (unsigned int i = 0; i < PointSetType::PointDimension; ++i)
    {
      double temp;
      dataTargetStream >> temp;
      point[i] = temp;
    }
    p_iter.Value() = point;
    ++p_iter;
  }

  dataTargetStream.close();

  /* Importing the point set to the sample */
  auto sampleTarget = DataSampleType::New();

  sampleTarget->SetPointSet(pointSet2);

  filter->SetInput(sample);
  filter->SetNumberOfClasses(numberOfClasses);
  filter->SetClassLabels(classLabelsObject);
  filter->SetDecisionRule(decisionRule);
  filter->SetMembershipFunctions(membershipFunctionsObject);
  filter->SetMembershipFunctionsWeightsArray(weightArrayObjects);

  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());


  // Check if the measurement vectors are correctly labelled.
  const FilterType::MembershipSampleType *        membershipSample = filter->GetOutput();
  FilterType::MembershipSampleType::ConstIterator iter = membershipSample->Begin();

  unsigned int sampleCounter = 0;

  unsigned int numberOfSamplesPerClass = 100;
  if (sampleCounter > numberOfSamplesPerClass)
  {
    if (iter.GetClassLabel() != class1)
    {
      std::cerr << "Classification error: " << sampleCounter << '\t' << iter.GetMeasurementVector() << '\t'
                << "Class label= " << iter.GetClassLabel() << "\tTrue label=" << class1 << std::endl;
      return EXIT_FAILURE;
    }
    ++iter;
    ++sampleCounter;
  }

  if (sampleCounter > numberOfSamplesPerClass)
  {
    if (iter.GetClassLabel() != class1)
    {
      std::cerr << "Classification error: " << sampleCounter << '\t' << iter.GetMeasurementVector() << '\t'
                << "Class label= " << iter.GetClassLabel() << "\tTrue label=" << class1 << std::endl;
      return EXIT_FAILURE;
    }
    ++iter;
    ++sampleCounter;
  }

  if (!passed)
  {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}