File: itkScalarImageKmeansImageFilter3DTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (331 lines) | stat: -rw-r--r-- 13,609 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include <iostream>
#include <fstream>

#include "itkImageFileWriter.h"
#include "itkImageFileReader.h"
#include "itkLabelStatisticsImageFilter.h"
#include "itkThresholdImageFilter.h"
#include "itkMaskImageFilter.h"
#include "itkNotImageFilter.h"
#include "itkScalarImageKmeansImageFilter.h"
#include "itkTestingMacros.h"

int
itkScalarImageKmeansImageFilter3DTest(int argc, char * argv[])
{

  if (argc < 4)
  {
    std::cerr << "Usage: " << std::endl;
    std::cerr << itkNameOfTestExecutableMacro(argv);
    std::cerr << " inputVolume input3DSkullStripVolume outputLabelMapVolume " << std::endl;
    return EXIT_FAILURE;
  }

  std::string inputVolume(argv[1]);
  std::string input3DSkullStripVolume(argv[2]);
  std::string outputLabelMapVolume(argv[3]);
  float       numberOfStdDeviations = 10.0;


  bool debug = true;
  if (debug)
  {
    std::cout << "Input T1 Image: " << inputVolume << std::endl;
    std::cout << "Input 3DSkullStrip Mask Image: " << input3DSkullStripVolume << std::endl;
    std::cout << "Number of Standard Deviations: " << numberOfStdDeviations << std::endl;
    std::cout << "Output K-Means LabelMap Image: " << outputLabelMapVolume << std::endl;
  }

  bool violated = false;
  if (inputVolume.empty())
  {
    violated = true;
    std::cout << "  --inputVolume Required! " << std::endl;
  }
  if (input3DSkullStripVolume.empty())
  {
    violated = true;
    std::cout << "  --input3DSkullStripVolume Required! " << std::endl;
  }
  if (outputLabelMapVolume.empty())
  {
    violated = true;
    std::cout << "  --outputLabelMapVolume Required! " << std::endl;
  }
  if (violated)
  {
    return EXIT_FAILURE;
  }

  using PixelType = short;
  constexpr unsigned int Dimension = 3;

  using ImageType = itk::Image<PixelType, Dimension>;
  using ReaderType = itk::ImageFileReader<ImageType>;

  auto T1Reader = ReaderType::New();
  T1Reader->SetFileName(inputVolume);

  auto maskReader = ReaderType::New();
  maskReader->SetFileName(input3DSkullStripVolume);

  const PixelType     imageExclusion = -32000;
  constexpr PixelType maskThresholdBelow = 5; // someday with more generality?

  /* The Threshold Image Filter is used to produce the brain clipping mask from a 3DSkullStrip result image. */
  using ThresholdFilterType = itk::ThresholdImageFilter<ImageType>;
  auto brainMaskFilter = ThresholdFilterType::New();
  brainMaskFilter->SetInput(maskReader->GetOutput());
  brainMaskFilter->ThresholdBelow(maskThresholdBelow);
  brainMaskFilter->Update();

  /* The Not Image Filter is used to produce the other clipping mask. */
  using NotFilterType = itk::NotImageFilter<ImageType, ImageType>;
  auto nonBrainMaskFilter = NotFilterType::New();
  nonBrainMaskFilter->SetInput(maskReader->GetOutput());
  nonBrainMaskFilter->Update();

  /* The Statistics Image Filter lets us find the initial cluster means.
     Should this be limited to the excluded region of the clipped T1 image?  */
  using LabelStatisticsFilterType = itk::LabelStatisticsImageFilter<ImageType, ImageType>;
  using StatisticRealType = LabelStatisticsFilterType::RealType;
  auto statisticsFilter = LabelStatisticsFilterType::New();
  statisticsFilter->SetInput(T1Reader->GetOutput());
  statisticsFilter->SetLabelInput(maskReader->GetOutput());
  statisticsFilter->Update();

  const auto              imageMin = static_cast<PixelType>(statisticsFilter->GetMinimum(6));
  const auto              imageMax = static_cast<PixelType>(statisticsFilter->GetMaximum(6));
  const StatisticRealType imageMean = statisticsFilter->GetMean(6);
  const StatisticRealType imageSigma = statisticsFilter->GetSigma(6);

  std::cout << "Brain Minimum == " << imageMin << std::endl;
  std::cout << "Brain Maximum == " << imageMax << std::endl;
  std::cout << "Brain Mean == " << imageMean << std::endl;
  std::cout << "Brain Sigma == " << imageSigma << std::endl;


  /* The Statistics Image Filter lets us find the initial cluster means.
     Should this be limited to the excluded region of the clipped T1 image?  */
  auto nonBrainStatisticsFilter = LabelStatisticsFilterType::New();
  nonBrainStatisticsFilter->SetInput(T1Reader->GetOutput());
  nonBrainStatisticsFilter->SetLabelInput(nonBrainMaskFilter->GetOutput());
  nonBrainStatisticsFilter->Update();

  const auto              nonBrainImageMin = static_cast<PixelType>(nonBrainStatisticsFilter->GetMinimum(1));
  const auto              nonBrainImageMax = static_cast<PixelType>(nonBrainStatisticsFilter->GetMaximum(1));
  const StatisticRealType nonBrainImageMean = nonBrainStatisticsFilter->GetMean(1);
  const StatisticRealType nonBrainImageSigma = nonBrainStatisticsFilter->GetSigma(1);

  // std::cout << "Background Minimum == " << nonBrainImageMin << std::endl;
  std::cout << "Background Maximum == " << nonBrainImageMax << std::endl;
  std::cout << "Background Minimum == " << nonBrainImageMin << std::endl;
  std::cout << "Background Mean == " << nonBrainImageMean << std::endl;
  std::cout << "Background Sigma == " << nonBrainImageSigma << std::endl;


  /* The Mask Image Filter applies the clipping mask by stepping
     on the excluded region with the imageExclusion value. */
  using MaskFilterType = itk::MaskImageFilter<ImageType, ImageType>;
  auto clippedBrainT1Filter = MaskFilterType::New();
  clippedBrainT1Filter->SetInput1(T1Reader->GetOutput());
  clippedBrainT1Filter->SetInput2(brainMaskFilter->GetOutput());
  clippedBrainT1Filter->SetOutsideValue(imageExclusion);
  std::cout << "clippedBrainT1Filter->Update " << std::endl;
  clippedBrainT1Filter->Update();

  ImageType::Pointer clippedBrainT1Pointer;

  if (numberOfStdDeviations > 0.0)
  {
    auto clipArterialBloodFilter = ThresholdFilterType::New();
    clipArterialBloodFilter->SetInput(clippedBrainT1Filter->GetOutput());
    clipArterialBloodFilter->ThresholdAbove(static_cast<PixelType>(imageMean + numberOfStdDeviations * imageSigma));
    clipArterialBloodFilter->SetOutsideValue(imageExclusion);
    std::cout << "clipArterialBloodFilter->Update " << std::endl;
    clipArterialBloodFilter->Update();
    clippedBrainT1Pointer = clipArterialBloodFilter->GetOutput();
  }
  else
  {
    clippedBrainT1Pointer = clippedBrainT1Filter->GetOutput();
  }

  /* The Mask Image Filter applies the clipping mask by stepping
     on the excluded region with the imageExclusion value. */
  auto clippedNonBrainT1Filter = MaskFilterType::New();
  clippedNonBrainT1Filter->SetInput1(T1Reader->GetOutput());
  clippedNonBrainT1Filter->SetInput2(nonBrainMaskFilter->GetOutput());
  clippedNonBrainT1Filter->SetOutsideValue(imageExclusion);
  std::cout << "clippedNonBrainT1Filter->Update " << std::endl;
  clippedNonBrainT1Filter->Update();

  /* The Scalar Image Kmeans Image Filter will find a code image in 3 classes
     for the interior of the mask, plus a code for the exterior of the mask. */
  using KMeansFilterType = itk::ScalarImageKmeansImageFilter<ImageType>;
  using RealPixelType = KMeansFilterType::RealPixelType;
  auto kmeansFilter = KMeansFilterType::New();
  kmeansFilter->SetInput(clippedBrainT1Pointer);

  constexpr bool useNonContiguousLabels = true;

  RealPixelType backgroundInitialMean = imageExclusion;
  //  RealPixelType bloodInitialMean = imageMax;    // ARTERIAL blood.
  const RealPixelType csfInitialMean = imageMin;
  const RealPixelType whiteInitialMean = imageMean + imageSigma;
  const RealPixelType grayInitialMean = imageMean - imageSigma;

  std::cout << "kmeansFilter InitialMeans  " << backgroundInitialMean << ";  " << csfInitialMean << ";  "
            << grayInitialMean << ";  " << whiteInitialMean << std::endl;
  kmeansFilter->AddClassWithInitialMean(backgroundInitialMean);
  kmeansFilter->AddClassWithInitialMean(csfInitialMean);
  kmeansFilter->AddClassWithInitialMean(grayInitialMean);
  kmeansFilter->AddClassWithInitialMean(whiteInitialMean);
  // kmeansFilter->AddClassWithInitialMean( bloodInitialMean );

  kmeansFilter->SetUseNonContiguousLabels(useNonContiguousLabels);

  std::cout << "kmeansFilter->Update [[Watch out for infinite loop here!]] " << std::endl;

  ITK_TRY_EXPECT_NO_EXCEPTION(kmeansFilter->Update());


  KMeansFilterType::ParametersType estimatedMeans = kmeansFilter->GetFinalMeans();

  unsigned int numberOfClasses = estimatedMeans.Size();

  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    std::cout << "Brain cluster[" << i << "] ";
    std::cout << "    estimated mean : " << estimatedMeans[i] << std::endl;
  }


  /* The Scalar Image Kmeans Image Filter will find a code image in 3 classes
     for the interior of the mask, plus a code for the exterior of the mask. */
  auto kmeansNonBrainFilter = KMeansFilterType::New();
  kmeansNonBrainFilter->SetInput(clippedNonBrainT1Filter->GetOutput());

  backgroundInitialMean = imageExclusion;
  const RealPixelType airInitialMean = imageMin;
  const RealPixelType fatInitialMean = imageMax;
  const RealPixelType muscleInitialMean = imageMean;
  // Why are these the brain region versions, and not the background region versions?  Seems to work, though.

  std::cout << "kmeansNonBrainFilter InitialMeans  " << backgroundInitialMean << ";  " << airInitialMean << ";  "
            << muscleInitialMean << ";  " << fatInitialMean << std::endl;
  kmeansNonBrainFilter->AddClassWithInitialMean(backgroundInitialMean);
  kmeansNonBrainFilter->AddClassWithInitialMean(airInitialMean);
  kmeansNonBrainFilter->AddClassWithInitialMean(muscleInitialMean);
  kmeansNonBrainFilter->AddClassWithInitialMean(fatInitialMean);
  kmeansNonBrainFilter->SetUseNonContiguousLabels(useNonContiguousLabels);

  ITK_TRY_EXPECT_NO_EXCEPTION(kmeansNonBrainFilter->Update());


  estimatedMeans = kmeansNonBrainFilter->GetFinalMeans();

  numberOfClasses = estimatedMeans.Size();

  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    std::cout << "Background cluster[" << i << "] ";
    std::cout << "    estimated mean : " << estimatedMeans[i] << std::endl;
  }

  /* Now remap the labels - background first followed by brain */
  using LabelImageType = KMeansFilterType::OutputImageType;
  auto kmeansLabelImage = LabelImageType::New();
  kmeansLabelImage->SetRegions(maskReader->GetOutput()->GetLargestPossibleRegion());
  kmeansLabelImage->SetSpacing(maskReader->GetOutput()->GetSpacing());
  kmeansLabelImage->SetDirection(maskReader->GetOutput()->GetDirection());
  kmeansLabelImage->SetOrigin(maskReader->GetOutput()->GetOrigin());
  kmeansLabelImage->AllocateInitialized();

  using LabelMapStatisticsFilterType = itk::LabelStatisticsImageFilter<LabelImageType, LabelImageType>;
  auto statisticsNonBrainFilter = LabelMapStatisticsFilterType::New();
  statisticsNonBrainFilter->SetInput(kmeansNonBrainFilter->GetOutput());
  statisticsNonBrainFilter->SetLabelInput(kmeansNonBrainFilter->GetOutput());
  std::cout << "statisticsNonBrainFilter->Update " << std::endl;
  statisticsNonBrainFilter->Update();

  /* Background Tissues are Lower Label values */
  unsigned char currentLabel = 0;
  for (unsigned int i = 1; i < 256; ++i)
  {
    if (statisticsNonBrainFilter->HasLabel(static_cast<unsigned char>(i)))
    {
      currentLabel++;
      LabelImageType::RegionType labelRegion = statisticsNonBrainFilter->GetRegion(static_cast<unsigned char>(i));
      itk::ImageRegionIterator<LabelImageType> it(kmeansNonBrainFilter->GetOutput(), labelRegion);

      it.GoToBegin();
      while (!it.IsAtEnd())
      {
        if (it.Get() == static_cast<unsigned char>(i))
        {
          // Set Output Image
          kmeansLabelImage->SetPixel(it.GetIndex(), currentLabel);
        }
        ++it;
      }
    }
  }

  /* Brain Tissues are Higher Label values */
  auto statisticsBrainFilter = LabelMapStatisticsFilterType::New();
  statisticsBrainFilter->SetInput(kmeansFilter->GetOutput());
  statisticsBrainFilter->SetLabelInput(kmeansFilter->GetOutput());
  std::cout << "statisticsBrainFilter->Update " << std::endl;
  statisticsBrainFilter->Update();

  for (unsigned int i = 1; i < 256; ++i)
  {
    if (statisticsBrainFilter->HasLabel(static_cast<unsigned char>(i)))
    {
      currentLabel++;
      LabelImageType::RegionType labelRegion = statisticsBrainFilter->GetRegion(static_cast<unsigned char>(i));
      itk::ImageRegionIterator<LabelImageType> it(kmeansFilter->GetOutput(), labelRegion);

      it.GoToBegin();
      while (!it.IsAtEnd())
      {
        if (it.Get() == static_cast<unsigned char>(i))
        {
          // Set Output Image
          kmeansLabelImage->SetPixel(it.GetIndex(), currentLabel);
        }
        ++it;
      }
    }
  }

  // Write out the resulting Label Image
  using WriterType = itk::ImageFileWriter<LabelImageType>;
  auto labelWriter = WriterType::New();
  labelWriter->SetInput(kmeansLabelImage);
  labelWriter->SetFileName(outputLabelMapVolume);

  ITK_TRY_EXPECT_NO_EXCEPTION(labelWriter->Update());


  return EXIT_SUCCESS;
}