File: itkScalarImageKmeansImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (141 lines) | stat: -rw-r--r-- 4,632 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkScalarImageKmeansImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkTestingMacros.h"

int
itkScalarImageKmeansImageFilterTest(int argc, char * argv[])
{
  if (argc < 5)
  {
    std::cerr << "Missing Parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv) << " inputScalarImage"
              << " outputLabeledImage"
              << " useNonContiguousLabels"
              << " numberOfClasses"
              << " mean1 mean2... meanN" << std::endl;
    return EXIT_FAILURE;
  }

  using PixelType = unsigned char;
  constexpr unsigned int Dimension = 2;

  using ImageType = itk::Image<PixelType, Dimension>;

  using ReaderType = itk::ImageFileReader<ImageType>;

  auto reader = ReaderType::New();
  reader->SetFileName(argv[1]);

  ITK_TRY_EXPECT_NO_EXCEPTION(reader->Update());


  using KMeansFilterType = itk::ScalarImageKmeansImageFilter<ImageType>;

  auto kmeansFilter = KMeansFilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(kmeansFilter, ScalarImageKmeansImageFilter, ImageToImageFilter);

  kmeansFilter->SetInput(reader->GetOutput());

  auto useNonContiguousLabels = static_cast<bool>(std::stoi(argv[3]));
  ITK_TEST_SET_GET_BOOLEAN(kmeansFilter, UseNonContiguousLabels, useNonContiguousLabels);

  typename KMeansFilterType::ImageRegionType            region;
  typename KMeansFilterType::ImageRegionType::IndexType index = { { 50, 50 } };
  typename KMeansFilterType::ImageRegionType::SizeType  size = { { 80, 100 } };
  region.SetIndex(index);
  region.SetSize(size);
  kmeansFilter->SetImageRegion(region);
  ITK_TEST_SET_GET_VALUE(region, kmeansFilter->GetImageRegion());

  const unsigned int numberOfInitialClasses = std::stoi(argv[4]);

  constexpr unsigned int numberOfArgumentsBeforeMeans = 5;
  if (static_cast<unsigned int>(argc) < numberOfInitialClasses + numberOfArgumentsBeforeMeans)
  {
    std::cerr << "Error: " << std::endl;
    std::cerr << numberOfInitialClasses << " classes has been specified ";
    std::cerr << "but no enough means have been provided in the command ";
    std::cerr << "line arguments " << std::endl;
    return EXIT_FAILURE;
  }

  // Before we add any mean check that an expection is thrown
  ITK_TRY_EXPECT_EXCEPTION(kmeansFilter->Update());


  for (unsigned int k = 0; k < numberOfInitialClasses; ++k)
  {
    kmeansFilter->AddClassWithInitialMean(std::stod(argv[k + numberOfArgumentsBeforeMeans]));
  }

  ITK_TRY_EXPECT_NO_EXCEPTION(kmeansFilter->Update());


  KMeansFilterType::ParametersType estimatedMeans = kmeansFilter->GetFinalMeans();

  const unsigned int numberOfClasses = estimatedMeans.Size();

  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    std::cout << "cluster[" << i << "] ";
    std::cout << "    estimated mean : " << estimatedMeans[i] << std::endl;
  }

  using OutputImageType = KMeansFilterType::OutputImageType;

  using RelabelFilterType = itk::RelabelComponentImageFilter<OutputImageType, OutputImageType>;


  auto relabeler = RelabelFilterType::New();

  relabeler->SetInput(kmeansFilter->GetOutput());

  using WriterType = itk::ImageFileWriter<OutputImageType>;
  auto writer = WriterType::New();
  writer->SetInput(relabeler->GetOutput());
  writer->SetFileName(argv[2]);

  ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());


  using SizesType = RelabelFilterType::ObjectSizeInPixelsContainerType;

  const SizesType & sizes = relabeler->GetSizeOfObjectsInPixels();

  auto sizeItr = sizes.begin();
  auto sizeEnd = sizes.end();

  std::cout << "Number of pixels per class " << std::endl;
  unsigned int kclass = 0;
  while (sizeItr != sizeEnd)
  {
    std::cout << "Class " << kclass << " = " << *sizeItr << std::endl;
    ++kclass;
    ++sizeItr;
  }


  std::cout << "Test finished." << std::endl;
  return EXIT_SUCCESS;
}