1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkBinaryMedianImageFilter_hxx
#define itkBinaryMedianImageFilter_hxx
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkOffset.h"
#include "itkTotalProgressReporter.h"
#include <vector>
#include <algorithm>
#include "itkMath.h"
namespace itk
{
template <typename TInputImage, typename TOutputImage>
BinaryMedianImageFilter<TInputImage, TOutputImage>::BinaryMedianImageFilter()
{
m_Radius.Fill(1);
m_ForegroundValue = NumericTraits<InputPixelType>::max();
m_BackgroundValue = InputPixelType{};
this->ThreaderUpdateProgressOff();
}
template <typename TInputImage, typename TOutputImage>
void
BinaryMedianImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
typename Superclass::InputImagePointer inputPtr = const_cast<TInputImage *>(this->GetInput());
typename Superclass::OutputImagePointer outputPtr = this->GetOutput();
if (!inputPtr || !outputPtr)
{
return;
}
// get a copy of the input requested region (should equal the output
// requested region)
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion = inputPtr->GetRequestedRegion();
// pad the input requested region by the operator radius
inputRequestedRegion.PadByRadius(m_Radius);
// crop the input requested region at the input's largest possible region
if (inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()))
{
inputPtr->SetRequestedRegion(inputRequestedRegion);
return;
}
else
{
// Couldn't crop the region (requested region is outside the largest
// possible region). Throw an exception.
// store what we tried to request (prior to trying to crop)
inputPtr->SetRequestedRegion(inputRequestedRegion);
// build an exception
InvalidRequestedRegionError e(__FILE__, __LINE__);
e.SetLocation(ITK_LOCATION);
e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
e.SetDataObject(inputPtr);
throw e;
}
}
template <typename TInputImage, typename TOutputImage>
void
BinaryMedianImageFilter<TInputImage, TOutputImage>::DynamicThreadedGenerateData(
const OutputImageRegionType & outputRegionForThread)
{
ZeroFluxNeumannBoundaryCondition<InputImageType> nbc;
ConstNeighborhoodIterator<InputImageType> bit;
ImageRegionIterator<OutputImageType> it;
// Allocate output
typename OutputImageType::Pointer output = this->GetOutput();
typename InputImageType::ConstPointer input = this->GetInput();
// Find the data-set boundary "faces"
NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType> bC;
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType>::FaceListType faceList =
bC(input, outputRegionForThread, m_Radius);
TotalProgressReporter progress(this, output->GetRequestedRegion().GetNumberOfPixels());
// Process each of the boundary faces. These are N-d regions which border
// the edge of the buffer.
for (const auto & face : faceList)
{
bit = ConstNeighborhoodIterator<InputImageType>(m_Radius, input, face);
it = ImageRegionIterator<OutputImageType>(output, face);
bit.OverrideBoundaryCondition(&nbc);
bit.GoToBegin();
unsigned int neighborhoodSize = bit.Size();
// All of our neighborhoods have an odd number of pixels, so there is
// always a median index (if there where an even number of pixels
// in the neighborhood we have to average the middle two values).
unsigned int medianPosition = neighborhoodSize / 2;
while (!bit.IsAtEnd())
{
// count the pixels in the neighborhood
unsigned int count = 0;
for (unsigned int i = 0; i < neighborhoodSize; ++i)
{
InputPixelType value = bit.GetPixel(i);
if (Math::ExactlyEquals(value, m_ForegroundValue))
{
++count;
}
}
if (count > medianPosition)
{
it.Set(static_cast<OutputPixelType>(m_ForegroundValue));
}
else
{
it.Set(static_cast<OutputPixelType>(m_BackgroundValue));
}
++bit;
++it;
progress.CompletedPixel();
}
}
}
template <typename TInputImage, typename TOutput>
void
BinaryMedianImageFilter<TInputImage, TOutput>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Radius: " << m_Radius << std::endl;
os << indent << "Foreground value : " << m_ForegroundValue << std::endl;
os << indent << "Background value : " << m_BackgroundValue << std::endl;
}
} // end namespace itk
#endif
|