1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLabelVotingImageFilter_h
#define itkLabelVotingImageFilter_h
#include "itkImageToImageFilter.h"
namespace itk
{
/**
* \class LabelVotingImageFilter
*
* \brief This filter performs pixelwise voting among an arbitrary number
* of input images, where each of them represents a segmentation of the same
* scene (i.e., image).
*
* Label voting is a simple method of classifier combination applied to
* image segmentation. Typically, the accuracy of the combined segmentation
* exceeds the accuracy of any of the input segmentations. Voting is therefore
* commonly used as a way of boosting segmentation performance.
*
* The use of label voting for combination of multiple segmentations is
* described in
*
* T. Rohlfing and C. R. Maurer, Jr., "Multi-classifier framework for
* atlas-based image segmentation," Pattern Recognition Letters, 2005.
*
* \par INPUTS
* All input volumes to this filter must be segmentations of an image,
* that is, they must have discrete pixel values where each value represents
* a different segmented object.
*
* Input volumes must all contain the same size RequestedRegions. Not all
* input images must contain all possible labels, but all label values must
* have the same meaning in all images.
*
* \par OUTPUTS
* The voting filter produces a single output volume. Each output pixel
* contains the label that occurred most often among the labels assigned to
* this pixel in all the input volumes, that is, the label that received the
* maximum number of "votes" from the input pixels.. If the maximum number of
* votes is not unique, i.e., if more than one label have a maximum number of
* votes, an "undecided" label is assigned to that output pixel.
*
* By default, the label used for undecided pixels is the maximum label value
* used in the input images plus one. Since it is possible for an image with
* 8 bit pixel values to use all 256 possible label values, it is permissible
* to combine 8 bit (i.e., byte) images into a 16 bit (i.e., short) output
* image.
*
* \par PARAMETERS
* The label used for "undecided" labels can be set using
* SetLabelForUndecidedPixels. This functionality can be unset by calling
* UnsetLabelForUndecidedPixels.
*
* \author Torsten Rohlfing, SRI International, Neuroscience Program
*
* \ingroup ITKLabelVoting
*/
template <typename TInputImage, typename TOutputImage = TInputImage>
class ITK_TEMPLATE_EXPORT LabelVotingImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(LabelVotingImageFilter);
/** Standard class type aliases. */
using Self = LabelVotingImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(LabelVotingImageFilter);
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
using OutputPixelType = typename TOutputImage::PixelType;
using InputPixelType = typename TInputImage::PixelType;
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
static constexpr unsigned int InputImageDimension = TInputImage::ImageDimension;
static constexpr unsigned int ImageDimension = TOutputImage::ImageDimension;
/** Image type alias support */
using InputImageType = TInputImage;
using OutputImageType = TOutputImage;
using InputImagePointer = typename InputImageType::ConstPointer;
using OutputImagePointer = typename OutputImageType::Pointer;
using LabelCountType = unsigned long;
/** Superclass type alias. */
using typename Superclass::OutputImageRegionType;
/** Set label value for undecided pixels. */
void
SetLabelForUndecidedPixels(const OutputPixelType l)
{
this->m_LabelForUndecidedPixels = l;
this->m_HasLabelForUndecidedPixels = true;
this->Modified();
}
/** Get label value used for undecided pixels.
* After updating the filter, this function returns the actual label value
* used for undecided pixels in the current output. Note that this value
* is overwritten when SetLabelForUndecidedPixels is called and the new
* value only becomes effective upon the next filter update.
*/
OutputPixelType
GetLabelForUndecidedPixels() const
{
return this->m_LabelForUndecidedPixels;
}
/** Unset label value for undecided pixels and turn on automatic selection.
*/
void
UnsetLabelForUndecidedPixels()
{
if (this->m_HasLabelForUndecidedPixels)
{
this->m_HasLabelForUndecidedPixels = false;
this->Modified();
}
}
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(InputConvertibleToOutputCheck, (Concept::Convertible<InputPixelType, OutputPixelType>));
itkConceptMacro(IntConvertibleToInputCheck, (Concept::Convertible<int, InputPixelType>));
itkConceptMacro(SameDimensionCheck, (Concept::SameDimension<InputImageDimension, ImageDimension>));
itkConceptMacro(InputUnsignedIntCheck, (Concept::IsUnsignedInteger<InputPixelType>));
itkConceptMacro(IntConvertibleToOutputPixelType, (Concept::Convertible<int, OutputPixelType>));
itkConceptMacro(InputPlusIntCheck, (Concept::AdditiveOperators<InputPixelType, int>));
itkConceptMacro(InputIncrementDecrementOperatorsCheck, (Concept::IncrementDecrementOperators<InputPixelType>));
itkConceptMacro(OutputOStreamWritableCheck, (Concept::OStreamWritable<OutputPixelType>));
// End concept checking
#endif
protected:
LabelVotingImageFilter();
~LabelVotingImageFilter() override = default;
/** Determine maximum label value in all input images and initialize
* global data. */
void
BeforeThreadedGenerateData() override;
void
DynamicThreadedGenerateData(const OutputImageRegionType & outputRegionForThread) override;
void
PrintSelf(std::ostream &, Indent) const override;
/** Determine maximum value among all input images' pixels. */
InputPixelType
ComputeMaximumInputValue();
private:
OutputPixelType m_LabelForUndecidedPixels{};
bool m_HasLabelForUndecidedPixels{ false };
size_t m_TotalLabelCount{ 0 };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkLabelVotingImageFilter.hxx"
#endif
#endif
|