1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMultiLabelSTAPLEImageFilter_h
#define itkMultiLabelSTAPLEImageFilter_h
#include "itkImage.h"
#include "itkImageToImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "vector"
#include "itkArray.h"
#include "itkArray2D.h"
#include "itkNumericTraits.h"
namespace itk
{
/**
* \class MultiLabelSTAPLEImageFilter
*
* \brief This filter performs a pixelwise combination of an arbitrary number
* of input images, where each of them represents a segmentation of the same
* scene (i.e., image).
*
* The labelings in the images are weighted relative to each other based on
* their "performance" as estimated by an expectation-maximization
* algorithm. In the process, a ground truth segmentation is estimated, and
* the estimated performances of the individual segmentations are relative to
* this estimated ground truth.
*
* The algorithm is based on the binary STAPLE algorithm by Warfield et al. as
* published originally in
*
* S. Warfield, K. Zou, W. Wells, "Validation of image segmentation and expert
* quality with an expectation-maximization algorithm" in MICCAI 2002: Fifth
* International Conference on Medical Image Computing and Computer-Assisted
* Intervention, Springer-Verlag, Heidelberg, Germany, 2002, pp. 298-306
*
* The multi-label algorithm implemented here is described in detail in
*
* T. Rohlfing, D. B. Russakoff, and C. R. Maurer, Jr., "Performance-based
* classifier combination in atlas-based image segmentation using
* expectation-maximization parameter estimation," IEEE Transactions on
* Medical Imaging, vol. 23, pp. 983-994, Aug. 2004.
*
* \par INPUTS
* All input volumes to this filter must be segmentations of an image,
* that is, they must have discrete pixel values where each value represents
* a different segmented object.
*
* Input volumes must all contain the same size RequestedRegions. Not all
* input images must contain all possible labels, but all label values must
* have the same meaning in all images.
*
* The filter can optionally be provided with estimates for the a priori class
* probabilities through the SetPriorProbabilities function. If no estimate is
* provided, one is automatically generated by analyzing the relative
* frequencies of the labels in the input images.
*
* \par OUTPUTS
* The filter produces a single output volume. Each output pixel
* contains the label that has the highest probability of being the correct
* label, based on the performance models of the individual segmentations.
* If the maximum probability is not unique, i.e., if more than one label have
* a maximum probability, then an "undecided" label is assigned to that output
* pixel.
*
* By default, the label used for undecided pixels is the maximum label value
* used in the input images plus one. Since it is possible for an image with
* 8 bit pixel values to use all 256 possible label values, it is permissible
* to combine 8 bit (i.e., byte) images into a 16 bit (i.e., short) output
* image.
*
* In addition to the combined image, the estimated confusion matrices for
* each of the input segmentations can be obtained through the
* GetConfusionMatrix member function.
*
* \par PARAMETERS
* The label used for "undecided" labels can be set using
* SetLabelForUndecidedPixels. This functionality can be unset by calling
* UnsetLabelForUndecidedPixels.
*
* A termination threshold for the EM iteration can be defined by calling
* SetTerminationUpdateThreshold. The iteration terminates once no single
* parameter of any confusion matrix changes by less than this
* threshold. Alternatively, a maximum number of iterations can be specified
* by calling SetMaximumNumberOfIterations. The algorithm may still terminate
* after a smaller number of iterations if the termination threshold criterion
* is satisfied.
*
* \par EVENTS
* This filter invokes IterationEvent() at each iteration of the E-M
* algorithm. Setting the AbortGenerateData() flag will cause the algorithm to
* halt after the current iteration and produce results just as if it had
* converged. The algorithm makes no attempt to report its progress since the
* number of iterations needed cannot be known in advance.
*
* \author Torsten Rohlfing, SRI International, Neuroscience Program
*
* \ingroup ITKLabelVoting
*/
template <typename TInputImage, typename TOutputImage = TInputImage, typename TWeights = float>
class ITK_TEMPLATE_EXPORT MultiLabelSTAPLEImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(MultiLabelSTAPLEImageFilter);
/** Standard class type aliases. */
using Self = MultiLabelSTAPLEImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(MultiLabelSTAPLEImageFilter);
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
using OutputPixelType = typename TOutputImage::PixelType;
using InputPixelType = typename TInputImage::PixelType;
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
static constexpr unsigned int ImageDimension = TOutputImage::ImageDimension;
/** Image type alias support */
using InputImageType = TInputImage;
using OutputImageType = TOutputImage;
using InputImagePointer = typename InputImageType::Pointer;
using OutputImagePointer = typename OutputImageType::Pointer;
/** Superclass type alias. */
using typename Superclass::OutputImageRegionType;
/** Iterator types. */
using InputConstIteratorType = ImageRegionConstIterator<TInputImage>;
using OutputIteratorType = ImageRegionIterator<TOutputImage>;
/** Confusion matrix type alias. */
using WeightsType = TWeights;
using ConfusionMatrixType = Array2D<WeightsType>;
using PriorProbabilitiesType = Array<WeightsType>;
/** Get the number of elapsed iterations of the iterative E-M algorithm. */
itkGetConstMacro(ElapsedNumberOfIterations, unsigned int);
/** Set maximum number of iterations.
*/
void
SetMaximumNumberOfIterations(const unsigned int mit)
{
this->m_MaximumNumberOfIterations = mit;
this->m_HasMaximumNumberOfIterations = true;
this->Modified();
}
itkGetConstMacro(MaximumNumberOfIterations, unsigned int);
/** True if the MaximumNumberOfIterations has been manually set. **/
itkGetConstMacro(HasMaximumNumberOfIterations, bool);
/** Unset the maximum number of iterations, and rely on the TerminationUpdateThreshold.
*/
void
UnsetMaximumNumberOfIterations()
{
if (this->m_HasMaximumNumberOfIterations)
{
this->m_HasMaximumNumberOfIterations = false;
this->Modified();
}
}
/** Set termination threshold based on confusion matrix parameter updates.
*/
itkSetMacro(TerminationUpdateThreshold, TWeights);
itkGetConstMacro(TerminationUpdateThreshold, TWeights);
/** Set label value for undecided pixels.
*/
void
SetLabelForUndecidedPixels(const OutputPixelType l)
{
this->m_LabelForUndecidedPixels = l;
this->m_HasLabelForUndecidedPixels = true;
this->Modified();
}
/** Get label value used for undecided pixels.
*
* After updating the filter, this function returns the actual label value
* used for undecided pixels in the current output. Note that this value
* is overwritten when SetLabelForUndecidedPixels is called and the new
* value only becomes effective upon the next filter update.
*/
itkGetMacro(LabelForUndecidedPixels, OutputPixelType);
/** True if LabelForUndecidedPixels has been manually set. */
itkGetMacro(HasLabelForUndecidedPixels, bool);
/** Unset label value for undecided pixels and turn on automatic selection.
*/
void
UnsetLabelForUndecidedPixels()
{
if (this->m_HasLabelForUndecidedPixels)
{
this->m_HasLabelForUndecidedPixels = false;
this->Modified();
}
}
/** Set manual estimates for the a priori class probabilities.
*
* The size of the array must be greater than the value of the
* largest label. The index into the array corresponds to the label
* value in the segmented image for the class.
*/
void
SetPriorProbabilities(const PriorProbabilitiesType & ppa)
{
this->m_PriorProbabilities = ppa;
this->m_HasPriorProbabilities = true;
this->Modified();
}
/** Get prior class probabilities.
*
* After updating the filter, this function returns the actual prior class
* probabilities. If these were not previously set by a call to
* SetPriorProbabilities, then they are estimated from the input
* segmentations and the result is available through this function.
*/
itkGetConstReferenceMacro(PriorProbabilities, PriorProbabilitiesType);
/** True if PriorProbabilities has been manually set. */
itkGetMacro(HasPriorProbabilities, bool);
/** Unset prior class probabilities and turn on automatic estimation.
*/
void
UnsetPriorProbabilities()
{
if (this->m_HasPriorProbabilities)
{
this->m_HasPriorProbabilities = false;
this->Modified();
}
}
/** Get confusion matrix for the i-th input segmentation.
*/
const ConfusionMatrixType &
GetConfusionMatrix(const unsigned int i) const
{
return this->m_ConfusionMatrixArray[i];
}
protected:
MultiLabelSTAPLEImageFilter()
: m_LabelForUndecidedPixels(OutputPixelType{})
, m_TerminationUpdateThreshold(1e-5)
{}
~MultiLabelSTAPLEImageFilter() override = default;
void
GenerateData() override;
void
PrintSelf(std::ostream &, Indent) const override;
/** Determine maximum value among all input images' pixels */
typename TInputImage::PixelType
ComputeMaximumInputValue();
// Override since the filter needs all the data for the algorithm
void
GenerateInputRequestedRegion() override;
// Override since the filter produces all of its output
void
EnlargeOutputRequestedRegion(DataObject *) override;
private:
size_t m_TotalLabelCount{ 0 };
OutputPixelType m_LabelForUndecidedPixels{};
bool m_HasLabelForUndecidedPixels{ false };
bool m_HasPriorProbabilities{ false };
PriorProbabilitiesType m_PriorProbabilities{};
void
InitializePriorProbabilities();
std::vector<ConfusionMatrixType> m_ConfusionMatrixArray{};
std::vector<ConfusionMatrixType> m_UpdatedConfusionMatrixArray{};
void
AllocateConfusionMatrixArray();
void
InitializeConfusionMatrixArrayFromVoting();
bool m_HasMaximumNumberOfIterations{ false };
unsigned int m_MaximumNumberOfIterations{ 0 };
unsigned int m_ElapsedNumberOfIterations{ 0u };
TWeights m_TerminationUpdateThreshold{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkMultiLabelSTAPLEImageFilter.hxx"
#endif
#endif
|