File: itkMultiLabelSTAPLEImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (335 lines) | stat: -rw-r--r-- 11,864 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkMultiLabelSTAPLEImageFilter_h
#define itkMultiLabelSTAPLEImageFilter_h

#include "itkImage.h"
#include "itkImageToImageFilter.h"

#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"

#include "vector"
#include "itkArray.h"
#include "itkArray2D.h"
#include "itkNumericTraits.h"

namespace itk
{
/**
 * \class MultiLabelSTAPLEImageFilter
 *
 * \brief This filter performs a pixelwise combination of an arbitrary number
 * of input images, where each of them represents a segmentation of the same
 * scene (i.e., image).
 *
 * The labelings in the images are weighted relative to each other based on
 * their "performance" as estimated by an expectation-maximization
 * algorithm. In the process, a ground truth segmentation is estimated, and
 * the estimated performances of the individual segmentations are relative to
 * this estimated ground truth.
 *
 * The algorithm is based on the binary STAPLE algorithm by Warfield et al. as
 * published originally in
 *
 * S. Warfield, K. Zou, W. Wells, "Validation of image segmentation and expert
 * quality with an expectation-maximization algorithm" in MICCAI 2002: Fifth
 * International Conference on Medical Image Computing and Computer-Assisted
 * Intervention, Springer-Verlag, Heidelberg, Germany, 2002, pp. 298-306
 *
 * The multi-label algorithm implemented here is described in detail in
 *
 * T. Rohlfing, D. B. Russakoff, and C. R. Maurer, Jr., "Performance-based
 * classifier combination in atlas-based image segmentation using
 * expectation-maximization parameter estimation," IEEE Transactions on
 * Medical Imaging, vol. 23, pp. 983-994, Aug. 2004.
 *
 * \par INPUTS
 * All input volumes to this filter must be segmentations of an image,
 * that is, they must have discrete pixel values where each value represents
 * a different segmented object.
 *
 * Input volumes must all contain the same size RequestedRegions. Not all
 * input images must contain all possible labels, but all label values must
 * have the same meaning in all images.
 *
 * The filter can optionally be provided with estimates for the a priori class
 * probabilities through the SetPriorProbabilities function. If no estimate is
 * provided, one is automatically generated by analyzing the relative
 * frequencies of the labels in the input images.
 *
 * \par OUTPUTS
 * The filter produces a single output volume. Each output pixel
 * contains the label that has the highest probability of being the correct
 * label, based on the performance models of the individual segmentations.
 * If the maximum probability is not unique, i.e., if more than one label have
 * a maximum probability, then an "undecided" label is assigned to that output
 * pixel.
 *
 * By default, the label used for undecided pixels is the maximum label value
 * used in the input images plus one. Since it is possible for an image with
 * 8 bit pixel values to use all 256 possible label values, it is permissible
 * to combine 8 bit (i.e., byte) images into a 16 bit (i.e., short) output
 * image.
 *
 * In addition to the combined image, the estimated confusion matrices for
 * each of the input segmentations can be obtained through the
 * GetConfusionMatrix member function.
 *
 * \par PARAMETERS
 * The label used for "undecided" labels can be set using
 * SetLabelForUndecidedPixels. This functionality can be unset by calling
 * UnsetLabelForUndecidedPixels.
 *
 * A termination threshold for the EM iteration can be defined by calling
 * SetTerminationUpdateThreshold. The iteration terminates once no single
 * parameter of any confusion matrix changes by less than this
 * threshold. Alternatively, a maximum number of iterations can be specified
 * by calling SetMaximumNumberOfIterations. The algorithm may still terminate
 * after a smaller number of iterations if the termination threshold criterion
 * is satisfied.
 *
 * \par EVENTS
 * This filter invokes IterationEvent() at each iteration of the E-M
 * algorithm. Setting the AbortGenerateData() flag will cause the algorithm to
 * halt after the current iteration and produce results just as if it had
 * converged. The algorithm makes no attempt to report its progress since the
 * number of iterations needed cannot be known in advance.
 *
 * \author Torsten Rohlfing, SRI International, Neuroscience Program
 *
 * \ingroup ITKLabelVoting
 */
template <typename TInputImage, typename TOutputImage = TInputImage, typename TWeights = float>
class ITK_TEMPLATE_EXPORT MultiLabelSTAPLEImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(MultiLabelSTAPLEImageFilter);

  /** Standard class type aliases. */
  using Self = MultiLabelSTAPLEImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(MultiLabelSTAPLEImageFilter);

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  using OutputPixelType = typename TOutputImage::PixelType;
  using InputPixelType = typename TInputImage::PixelType;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  static constexpr unsigned int ImageDimension = TOutputImage::ImageDimension;

  /** Image type alias support */
  using InputImageType = TInputImage;
  using OutputImageType = TOutputImage;
  using InputImagePointer = typename InputImageType::Pointer;
  using OutputImagePointer = typename OutputImageType::Pointer;

  /** Superclass type alias. */
  using typename Superclass::OutputImageRegionType;

  /** Iterator types. */
  using InputConstIteratorType = ImageRegionConstIterator<TInputImage>;
  using OutputIteratorType = ImageRegionIterator<TOutputImage>;

  /** Confusion matrix type alias. */
  using WeightsType = TWeights;
  using ConfusionMatrixType = Array2D<WeightsType>;
  using PriorProbabilitiesType = Array<WeightsType>;

  /** Get the number of elapsed iterations of the iterative E-M algorithm. */
  itkGetConstMacro(ElapsedNumberOfIterations, unsigned int);

  /** Set maximum number of iterations.
   */
  void
  SetMaximumNumberOfIterations(const unsigned int mit)
  {
    this->m_MaximumNumberOfIterations = mit;
    this->m_HasMaximumNumberOfIterations = true;
    this->Modified();
  }
  itkGetConstMacro(MaximumNumberOfIterations, unsigned int);

  /** True if the MaximumNumberOfIterations has been manually set. **/
  itkGetConstMacro(HasMaximumNumberOfIterations, bool);

  /** Unset the maximum number of iterations, and rely on the TerminationUpdateThreshold.
   */
  void
  UnsetMaximumNumberOfIterations()
  {
    if (this->m_HasMaximumNumberOfIterations)
    {
      this->m_HasMaximumNumberOfIterations = false;
      this->Modified();
    }
  }

  /** Set termination threshold based on confusion matrix parameter updates.
   */
  itkSetMacro(TerminationUpdateThreshold, TWeights);
  itkGetConstMacro(TerminationUpdateThreshold, TWeights);

  /** Set label value for undecided pixels.
   */
  void
  SetLabelForUndecidedPixels(const OutputPixelType l)
  {
    this->m_LabelForUndecidedPixels = l;
    this->m_HasLabelForUndecidedPixels = true;
    this->Modified();
  }

  /** Get label value used for undecided pixels.
   *
   * After updating the filter, this function returns the actual label value
   * used for undecided pixels in the current output. Note that this value
   * is overwritten when SetLabelForUndecidedPixels is called and the new
   * value only becomes effective upon the next filter update.
   */
  itkGetMacro(LabelForUndecidedPixels, OutputPixelType);

  /** True if LabelForUndecidedPixels has been manually set. */
  itkGetMacro(HasLabelForUndecidedPixels, bool);

  /** Unset label value for undecided pixels and turn on automatic selection.
   */
  void
  UnsetLabelForUndecidedPixels()
  {
    if (this->m_HasLabelForUndecidedPixels)
    {
      this->m_HasLabelForUndecidedPixels = false;
      this->Modified();
    }
  }

  /** Set manual estimates for the a priori class probabilities.
   *
   * The size of the array must be greater than the value of the
   * largest label. The index into the array corresponds to the label
   * value in the segmented image for the class.
   */
  void
  SetPriorProbabilities(const PriorProbabilitiesType & ppa)
  {
    this->m_PriorProbabilities = ppa;
    this->m_HasPriorProbabilities = true;
    this->Modified();
  }

  /** Get prior class probabilities.
   *
   * After updating the filter, this function returns the actual prior class
   * probabilities. If these were not previously set by a call to
   * SetPriorProbabilities, then they are estimated from the input
   * segmentations and the result is available through this function.
   */
  itkGetConstReferenceMacro(PriorProbabilities, PriorProbabilitiesType);

  /** True if PriorProbabilities has been manually set. */
  itkGetMacro(HasPriorProbabilities, bool);

  /** Unset prior class probabilities and turn on automatic estimation.
   */
  void
  UnsetPriorProbabilities()
  {
    if (this->m_HasPriorProbabilities)
    {
      this->m_HasPriorProbabilities = false;
      this->Modified();
    }
  }

  /** Get confusion matrix for the i-th input segmentation.
   */
  const ConfusionMatrixType &
  GetConfusionMatrix(const unsigned int i) const
  {
    return this->m_ConfusionMatrixArray[i];
  }

protected:
  MultiLabelSTAPLEImageFilter()
    : m_LabelForUndecidedPixels(OutputPixelType{})
    , m_TerminationUpdateThreshold(1e-5)
  {}
  ~MultiLabelSTAPLEImageFilter() override = default;

  void
  GenerateData() override;

  void
  PrintSelf(std::ostream &, Indent) const override;

  /** Determine maximum value among all input images' pixels */
  typename TInputImage::PixelType
  ComputeMaximumInputValue();

  // Override since the filter needs all the data for the algorithm
  void
  GenerateInputRequestedRegion() override;

  // Override since the filter produces all of its output
  void
  EnlargeOutputRequestedRegion(DataObject *) override;

private:
  size_t m_TotalLabelCount{ 0 };

  OutputPixelType m_LabelForUndecidedPixels{};
  bool            m_HasLabelForUndecidedPixels{ false };

  bool                   m_HasPriorProbabilities{ false };
  PriorProbabilitiesType m_PriorProbabilities{};

  void
  InitializePriorProbabilities();

  std::vector<ConfusionMatrixType> m_ConfusionMatrixArray{};
  std::vector<ConfusionMatrixType> m_UpdatedConfusionMatrixArray{};

  void
  AllocateConfusionMatrixArray();
  void
  InitializeConfusionMatrixArrayFromVoting();

  bool         m_HasMaximumNumberOfIterations{ false };
  unsigned int m_MaximumNumberOfIterations{ 0 };
  unsigned int m_ElapsedNumberOfIterations{ 0u };

  TWeights m_TerminationUpdateThreshold{};
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkMultiLabelSTAPLEImageFilter.hxx"
#endif

#endif