1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMultiLabelSTAPLEImageFilter_hxx
#define itkMultiLabelSTAPLEImageFilter_hxx
#include "itkLabelVotingImageFilter.h"
#include "itkMath.h"
#include "itkMakeUniqueForOverwrite.h"
namespace itk
{
template <typename TInputImage, typename TOutputImage, typename TWeights>
void
MultiLabelSTAPLEImageFilter<TInputImage, TOutputImage, TWeights>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "HasLabelForUndecidedPixels: " << this->m_HasLabelForUndecidedPixels << std::endl;
using OutputPixelPrintType = typename NumericTraits<OutputPixelType>::PrintType;
os << indent << "LabelForUndecidedPixels: " << static_cast<OutputPixelPrintType>(this->m_LabelForUndecidedPixels)
<< std::endl;
os << indent << "HasPriorProbabilities: " << this->m_PriorProbabilities << std::endl;
os << indent << "PriorProbabilities: " << this->m_PriorProbabilities << std::endl;
os << indent << "HasMaximumNumberOfIterations: " << this->m_HasMaximumNumberOfIterations << std::endl;
os << indent << "MaximumNumberOfIterations: " << this->m_MaximumNumberOfIterations << std::endl;
os << indent << "ElapsedNumberOfIterations: " << m_ElapsedNumberOfIterations << std::endl;
os << indent << "TerminationUpdateThreshold: " << this->m_TerminationUpdateThreshold << std::endl;
}
template <typename TInputImage, typename TOutputImage, typename TWeights>
void
MultiLabelSTAPLEImageFilter<TInputImage, TOutputImage, TWeights>::GenerateInputRequestedRegion()
{
Superclass::GenerateInputRequestedRegion();
for (unsigned int k = 0; k < this->GetNumberOfInputs(); ++k)
{
InputImagePointer input = const_cast<InputImageType *>(this->GetInput(k));
input->SetRequestedRegionToLargestPossibleRegion();
}
}
template <typename TInputImage, typename TOutputImage, typename TWeights>
void
MultiLabelSTAPLEImageFilter<TInputImage, TOutputImage, TWeights>::EnlargeOutputRequestedRegion(DataObject * data)
{
Superclass::EnlargeOutputRequestedRegion(data);
data->SetRequestedRegionToLargestPossibleRegion();
}
template <typename TInputImage, typename TOutputImage, typename TWeights>
typename TInputImage::PixelType
MultiLabelSTAPLEImageFilter<TInputImage, TOutputImage, TWeights>::ComputeMaximumInputValue()
{
InputPixelType maxLabel = 0;
// Record the number of input files.
const size_t numberOfInputs = this->GetNumberOfInputs();
for (size_t k = 0; k < numberOfInputs; ++k)
{
InputConstIteratorType it(this->GetInput(k), this->GetInput(k)->GetBufferedRegion());
for (it.GoToBegin(); !it.IsAtEnd(); ++it)
{
maxLabel = std::max(maxLabel, it.Get());
}
}
return maxLabel;
}
template <typename TInputImage, typename TOutputImage, typename TWeights>
void
MultiLabelSTAPLEImageFilter<TInputImage, TOutputImage, TWeights>::AllocateConfusionMatrixArray()
{
// we need one confusion matrix for every input
const ProcessObject::DataObjectPointerArraySizeType numberOfInputs = this->GetNumberOfInputs();
this->m_ConfusionMatrixArray.clear();
this->m_UpdatedConfusionMatrixArray.clear();
// create the confusion matrix and space for updated confusion matrix for
// each of the input images
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
// the confusion matrix has as many rows as there are input labels, and
// one more column to accommodate "reject" classifications by the combined
// classifier.
this->m_ConfusionMatrixArray.push_back(ConfusionMatrixType(static_cast<unsigned int>(this->m_TotalLabelCount) + 1,
static_cast<unsigned int>(this->m_TotalLabelCount)));
this->m_UpdatedConfusionMatrixArray.push_back(ConfusionMatrixType(
static_cast<unsigned int>(this->m_TotalLabelCount) + 1, static_cast<unsigned int>(this->m_TotalLabelCount)));
}
}
template <typename TInputImage, typename TOutputImage, typename TWeights>
void
MultiLabelSTAPLEImageFilter<TInputImage, TOutputImage, TWeights>::InitializeConfusionMatrixArrayFromVoting()
{
const auto numberOfInputs = static_cast<const unsigned int>(this->GetNumberOfInputs());
using LabelVotingFilterType = LabelVotingImageFilter<TInputImage, TOutputImage>;
using LabelVotingFilterPointer = typename LabelVotingFilterType::Pointer;
typename OutputImageType::Pointer votingOutput;
{ // begin scope for local filter allocation
LabelVotingFilterPointer votingFilter = LabelVotingFilterType::New();
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
votingFilter->SetInput(k, this->GetInput(k));
}
votingFilter->Update();
votingOutput = votingFilter->GetOutput();
} // begin scope for local filter allocation; de-allocate filter
OutputIteratorType out(votingOutput, votingOutput->GetRequestedRegion());
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
this->m_ConfusionMatrixArray[k].Fill(0.0);
InputConstIteratorType in(this->GetInput(k), votingOutput->GetRequestedRegion());
for (out.GoToBegin(); !out.IsAtEnd(); ++out, ++in)
{
++(this->m_ConfusionMatrixArray[k][in.Get()][out.Get()]);
}
}
// normalize matrix rows to unit probability sum
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
for (InputPixelType inLabel = 0; inLabel < this->m_TotalLabelCount + 1; ++inLabel)
{
// compute sum over all output labels for given input label
WeightsType sum = 0;
for (OutputPixelType outLabel = 0; outLabel < this->m_TotalLabelCount; ++outLabel)
{
sum += this->m_ConfusionMatrixArray[k][inLabel][outLabel];
}
// make sure that this input label did in fact show up in the input!!
if (sum > 0)
{
// normalize
for (OutputPixelType outLabel = 0; outLabel < this->m_TotalLabelCount; ++outLabel)
{
this->m_ConfusionMatrixArray[k][inLabel][outLabel] /= sum;
}
}
}
}
}
template <typename TInputImage, typename TOutputImage, typename TWeights>
void
MultiLabelSTAPLEImageFilter<TInputImage, TOutputImage, TWeights>::InitializePriorProbabilities()
{
// test for user-defined prior probabilities and create an estimated one if
// none exists
if (this->m_HasPriorProbabilities)
{
if (this->m_PriorProbabilities.GetSize() < this->m_TotalLabelCount)
{
itkExceptionMacro("m_PriorProbabilities array has wrong size " << m_PriorProbabilities << "; should be at least "
<< 1 + this->m_TotalLabelCount);
}
}
else
{
this->m_PriorProbabilities.SetSize(1 + static_cast<SizeValueType>(this->m_TotalLabelCount));
this->m_PriorProbabilities.Fill(0.0);
const size_t numberOfInputs = this->GetNumberOfInputs();
for (size_t k = 0; k < numberOfInputs; ++k)
{
InputConstIteratorType in(this->GetInput(k), this->GetOutput()->GetRequestedRegion());
for (in.GoToBegin(); !in.IsAtEnd(); ++in)
{
++(this->m_PriorProbabilities[in.Get()]);
}
}
WeightsType totalProbMass = 0.0;
for (InputPixelType l = 0; l < this->m_TotalLabelCount; ++l)
{
totalProbMass += this->m_PriorProbabilities[l];
}
for (InputPixelType l = 0; l < this->m_TotalLabelCount; ++l)
{
this->m_PriorProbabilities[l] /= totalProbMass;
}
}
}
template <typename TInputImage, typename TOutputImage, typename TWeights>
void
MultiLabelSTAPLEImageFilter<TInputImage, TOutputImage, TWeights>::GenerateData()
{
// determine the maximum label in all input images
this->m_TotalLabelCount = static_cast<size_t>(this->ComputeMaximumInputValue()) + 1;
if (!this->m_HasLabelForUndecidedPixels)
{
this->m_LabelForUndecidedPixels = static_cast<OutputPixelType>(this->m_TotalLabelCount);
}
// allocate and initialize the confusion matrices
this->AllocateConfusionMatrixArray();
this->InitializeConfusionMatrixArrayFromVoting();
// test existing or allocate and initialize new array with prior class
// probabilities
this->InitializePriorProbabilities();
// Allocate the output image.
typename TOutputImage::Pointer output = this->GetOutput();
output->SetBufferedRegion(output->GetRequestedRegion());
output->Allocate();
// Record the number of input files.
const size_t numberOfInputs = this->GetNumberOfInputs();
// create and initialize all input image iterators
const auto it = make_unique_for_overwrite<InputConstIteratorType[]>(numberOfInputs);
for (size_t k = 0; k < numberOfInputs; ++k)
{
it[k] = InputConstIteratorType(this->GetInput(k), output->GetRequestedRegion());
}
// allocate array for pixel class weights
const auto W = make_unique_for_overwrite<WeightsType[]>(this->m_TotalLabelCount);
unsigned int iteration = 0;
for (; (!this->m_HasMaximumNumberOfIterations) || (iteration < this->m_MaximumNumberOfIterations); ++iteration)
{
// reset updated confusion matrix
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
this->m_UpdatedConfusionMatrixArray[k].Fill(0.0);
}
// reset all input iterators to start
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
it[k].GoToBegin();
}
// use it[0] as indicator for image pixel count
while (!it[0].IsAtEnd())
{
// the following is the E step
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
W[ci] = this->m_PriorProbabilities[ci];
}
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
const InputPixelType j = it[k].Get();
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
W[ci] *= this->m_ConfusionMatrixArray[k][j][ci];
}
}
// the following is the M step
WeightsType sumW = W[0];
for (OutputPixelType ci = 1; ci < this->m_TotalLabelCount; ++ci)
{
sumW += W[ci];
}
if (sumW)
{
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
W[ci] /= sumW;
}
}
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
const InputPixelType j = it[k].Get();
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
this->m_UpdatedConfusionMatrixArray[k][j][ci] += W[ci];
}
// we're now done with this input pixel, so update.
++(it[k]);
}
}
// Normalize matrix elements of each of the updated confusion matrices
// with sum over all expert decisions.
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
// compute sum over all output classifications
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
WeightsType sumW = this->m_UpdatedConfusionMatrixArray[k][0][ci];
for (InputPixelType j = 1; j < 1 + this->m_TotalLabelCount; ++j)
{
sumW += this->m_UpdatedConfusionMatrixArray[k][j][ci];
}
// normalize with for each class ci
if (sumW)
{
for (InputPixelType j = 0; j < 1 + this->m_TotalLabelCount; ++j)
{
this->m_UpdatedConfusionMatrixArray[k][j][ci] /= sumW;
}
}
}
}
// now we're applying the update to the confusion matrices and compute the
// maximum parameter change in the process.
WeightsType maximumUpdate = 0;
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
for (InputPixelType j = 0; j < 1 + this->m_TotalLabelCount; ++j)
{
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
const WeightsType thisParameterUpdate =
itk::Math::abs(this->m_UpdatedConfusionMatrixArray[k][j][ci] - this->m_ConfusionMatrixArray[k][j][ci]);
maximumUpdate = std::max(maximumUpdate, thisParameterUpdate);
this->m_ConfusionMatrixArray[k][j][ci] = this->m_UpdatedConfusionMatrixArray[k][j][ci];
}
}
}
this->InvokeEvent(IterationEvent());
if (this->GetAbortGenerateData())
{
this->ResetPipeline();
// fake this to cause termination; we could really just break
maximumUpdate = 0;
}
// if all confusion matrix parameters changes by less than the defined
// threshold, we're done.
if (maximumUpdate < this->m_TerminationUpdateThreshold)
{
break;
}
} // end for ( iteration )
// now we'll build the combined output image based on the estimated
// confusion matrices
// reset all input iterators to start
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
it[k].GoToBegin();
}
for (OutputIteratorType out(output, output->GetRequestedRegion()); !out.IsAtEnd(); ++out)
{
// basically, we'll repeat the E step from above
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
W[ci] = this->m_PriorProbabilities[ci];
}
for (unsigned int k = 0; k < numberOfInputs; ++k)
{
const InputPixelType j = it[k].Get();
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
W[ci] *= this->m_ConfusionMatrixArray[k][j][ci];
}
++it[k];
}
// now determine the label with the maximum W
auto winningLabel = this->m_LabelForUndecidedPixels;
WeightsType winningLabelW = 0;
for (OutputPixelType ci = 0; ci < this->m_TotalLabelCount; ++ci)
{
if (W[ci] > winningLabelW)
{
winningLabelW = W[ci];
winningLabel = ci;
}
else if (!(W[ci] < winningLabelW))
{
winningLabel = this->m_LabelForUndecidedPixels;
}
}
out.Set(winningLabel);
}
m_ElapsedNumberOfIterations = iteration;
}
} // end namespace itk
#endif
|