1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkRandomImageSource.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkBinaryMedianImageFilter.h"
#include "itkTextOutput.h"
#include "itkTestingMacros.h"
int
itkBinaryMedianImageFilterTest(int, char *[])
{
// Comment the following if you want to use the itk text output window
itk::OutputWindow::SetInstance(itk::TextOutput::New());
using ImageType = itk::Image<unsigned short, 2>;
itk::RandomImageSource<ImageType>::Pointer random;
random = itk::RandomImageSource<ImageType>::New();
random->SetMin(0);
random->SetMax(100);
ImageType::SizeValueType randomSize[2];
randomSize[0] = randomSize[1] = 8;
random->SetSize(randomSize);
ImageType::SpacingValueType spacing[2] = { 0.7, 2.1 };
random->SetSpacing(spacing);
ImageType::PointValueType origin[2] = { 15, 400 };
random->SetOrigin(origin);
ImageType::PixelType foreground = 97; // prime numbers are good testers
ImageType::PixelType background = 29;
itk::BinaryThresholdImageFilter<ImageType, ImageType>::Pointer thresholder;
thresholder = itk::BinaryThresholdImageFilter<ImageType, ImageType>::New();
thresholder->SetInput(random->GetOutput());
thresholder->SetLowerThreshold(30);
thresholder->SetUpperThreshold(100);
thresholder->SetInsideValue(foreground);
thresholder->SetOutsideValue(background);
// Create a median image
itk::BinaryMedianImageFilter<ImageType, ImageType>::Pointer median;
median = itk::BinaryMedianImageFilter<ImageType, ImageType>::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(median, BinaryMedianImageFilter, ImageToImageFilter);
median->SetInput(thresholder->GetOutput());
median->SetForegroundValue(foreground);
ITK_TEST_SET_GET_VALUE(foreground, median->GetForegroundValue());
median->SetBackgroundValue(background);
ITK_TEST_SET_GET_VALUE(background, median->GetBackgroundValue());
// define the neighborhood size used for the median filter (5x5)
ImageType::SizeType neighRadius;
neighRadius[0] = 1;
neighRadius[1] = 1;
median->SetRadius(neighRadius);
ITK_TEST_SET_GET_VALUE(neighRadius, median->GetRadius());
// run the algorithm
median->Update();
itk::ImageRegionIterator<ImageType> it;
it = itk::ImageRegionIterator<ImageType>(random->GetOutput(), random->GetOutput()->GetBufferedRegion());
std::cout << "Input image" << std::endl;
unsigned int i;
for (i = 1; !it.IsAtEnd(); ++i, ++it)
{
std::cout << '\t' << it.Get();
if ((i % 8) == 0)
{
std::cout << std::endl;
}
}
it = itk::ImageRegionIterator<ImageType>(thresholder->GetOutput(), thresholder->GetOutput()->GetBufferedRegion());
std::cout << "Binary image" << std::endl;
for (i = 1; !it.IsAtEnd(); ++i, ++it)
{
std::cout << '\t' << it.Get();
if ((i % 8) == 0)
{
std::cout << std::endl;
}
}
std::cout << "Output image" << std::endl;
it = itk::ImageRegionIterator<ImageType>(median->GetOutput(), median->GetOutput()->GetBufferedRegion());
for (i = 1; !it.IsAtEnd(); ++i, ++it)
{
std::cout << '\t' << it.Get();
if ((i % 8) == 0)
{
std::cout << std::endl;
}
}
return EXIT_SUCCESS;
}
|