File: itkMultiLabelSTAPLEImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (232 lines) | stat: -rw-r--r-- 7,928 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include "itkMultiLabelSTAPLEImageFilter.h"
#include "itkTestingMacros.h"

int
itkMultiLabelSTAPLEImageFilterTest(int, char *[])
{

  // Define the dimension of the images
  constexpr unsigned int Dimension = 3;
  constexpr unsigned int imageSizePerDimension = 2;
  constexpr unsigned int imageSize = 8; // std::pow(imageSizePerDimension, Dimension);

  // Declare the types of the images
  using ImageType = itk::Image<unsigned int, Dimension>;

  // Input data arrays for test images
  const unsigned int dataImageA[imageSize] = { 0, 1, 3, 3, 4, 6, 6, 0 };
  const unsigned int dataImageB[imageSize] = { 1, 1, 2, 4, 4, 5, 7, 1 };
  const unsigned int dataImageC[imageSize] = { 0, 2, 2, 3, 5, 5, 6, 8 };

  // Correct combinations of input images
  const unsigned int combinationABC[imageSize] = { 0, 1, 2, 3, 4, 5, 6, 9 };
  const unsigned int combinationAB[imageSize] = { 8, 1, 8, 8, 4, 8, 8, 8 };
  const unsigned int combinationABundecided255[imageSize] = { 255, 1, 255, 255, 4, 255, 255, 255 };

  // Declare the type of the index to access images
  using IndexType = itk::Index<Dimension>;

  // Declare the type of the size
  using SizeType = itk::Size<Dimension>;

  // Declare the type of the Region
  using RegionType = itk::ImageRegion<Dimension>;

  // Declare Iterator type appropriate for image
  using IteratorType = itk::ImageRegionIterator<ImageType>;

  // Declare the type for the ADD filter
  using FilterType = itk::MultiLabelSTAPLEImageFilter<ImageType>;
  using FilterTypePointer = FilterType::Pointer;

  // Declare the pointers to images
  using ImageTypePointer = ImageType::Pointer;

  // Create two images
  ImageTypePointer inputImageA = ImageType::New();
  ImageTypePointer inputImageB = ImageType::New();
  ImageTypePointer inputImageC = ImageType::New();

  RegionType region;
  {
    // Define their size, and start index
    SizeType size;
    size[0] = imageSizePerDimension;
    size[1] = imageSizePerDimension;
    size[2] = imageSizePerDimension;

    IndexType start;
    start[0] = 0;
    start[1] = 0;
    start[2] = 0;

    region.SetIndex(start);
    region.SetSize(size);
  }

  // Initialize Image A
  inputImageA->SetRegions(region);
  inputImageA->Allocate();

  IteratorType it(inputImageA, inputImageA->GetBufferedRegion());

  for (unsigned int i = 0; i < imageSize; ++i, ++it)
  {
    it.Set(dataImageA[i]);
  }

  // Initialize Image B
  inputImageB->SetRegions(region);
  inputImageB->Allocate();

  it = IteratorType(inputImageB, inputImageB->GetBufferedRegion());
  for (unsigned int i = 0; i < imageSize; ++i, ++it)
  {
    it.Set(dataImageB[i]);
  }

  // Initialize Image C
  inputImageC->SetRegions(region);
  inputImageC->Allocate();

  it = IteratorType(inputImageC, inputImageC->GetBufferedRegion());
  for (unsigned int i = 0; i < imageSize; ++i, ++it)
  {
    it.Set(dataImageC[i]);
  }

  // Create an LabelVoting Filter
  FilterTypePointer filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, MultiLabelSTAPLEImageFilter, ImageToImageFilter);

  // Get the Smart Pointer to the Filter Output
  ImageTypePointer outputImage = filter->GetOutput();

  // Test first two input images with undecided label set to 255

  // Connect the first two input images
  filter->SetInput(0, inputImageA);
  filter->SetInput(1, inputImageB);

  ITK_TEST_EXPECT_TRUE(!filter->GetHasMaximumNumberOfIterations());

  unsigned int maximumNumberOfIterations = 100;
  filter->SetMaximumNumberOfIterations(maximumNumberOfIterations);
  ITK_TEST_SET_GET_VALUE(maximumNumberOfIterations, filter->GetMaximumNumberOfIterations());

  ITK_TEST_EXPECT_TRUE(filter->GetHasMaximumNumberOfIterations());

  ITK_TEST_EXPECT_TRUE(!filter->GetHasLabelForUndecidedPixels());

  filter->UnsetMaximumNumberOfIterations();

  typename FilterType::WeightsType terminationUpdateThreshold = 1e-5;
  filter->SetTerminationUpdateThreshold(terminationUpdateThreshold);
  ITK_TEST_SET_GET_VALUE(terminationUpdateThreshold, filter->GetTerminationUpdateThreshold());

  // Set label for undecided pixels
  typename FilterType::OutputPixelType labelForUndecidedPixels = 255;
  filter->SetLabelForUndecidedPixels(labelForUndecidedPixels);
  ITK_TEST_SET_GET_VALUE(labelForUndecidedPixels, filter->GetLabelForUndecidedPixels());

  ITK_TEST_EXPECT_TRUE(filter->GetHasLabelForUndecidedPixels());

  ITK_TEST_EXPECT_TRUE(!filter->GetHasPriorProbabilities());

  typename FilterType::PriorProbabilitiesType::ValueType priorProbabilitiesVal(0.0);
  typename FilterType::PriorProbabilitiesType            priorProbabilities(1);
  priorProbabilities.Fill(priorProbabilitiesVal);
  filter->SetPriorProbabilities(priorProbabilities);
  ITK_TEST_SET_GET_VALUE(priorProbabilities, filter->GetPriorProbabilities());

  ITK_TEST_EXPECT_TRUE(filter->GetHasPriorProbabilities());

  ITK_TRY_EXPECT_EXCEPTION(filter->Update());


  filter->UnsetPriorProbabilities();

  // Execute the filter
  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  std::cout << "ElapsedNumberOfIterations: " << filter->GetElapsedNumberOfIterations() << std::endl;

  // Compare to correct results
  it = IteratorType(outputImage, outputImage->GetBufferedRegion());
  for (unsigned int i = 0; i < imageSize; ++i, ++it)
  {
    if (combinationABundecided255[i] != it.Get())
    {
      std::cout << "Incorrect result using images A,B and undecided=" << labelForUndecidedPixels << ": "
                << "i = " << i << ", correct = " << combinationABundecided255[i] << ", got = " << it.Get() << std::endl;
      return EXIT_FAILURE;
    }
  }

  // Test first two input images

  // Unset undecided pixel label; reinstate automatic selection
  filter->UnsetLabelForUndecidedPixels();

  // Execute the filter
  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  // Compare to correct results
  it = IteratorType(outputImage, outputImage->GetBufferedRegion());
  for (unsigned int i = 0; i < 8; ++i, ++it)
  {
    if (combinationAB[i] != it.Get())
    {
      std::cout << "Incorrect result using images A,B: i = " << i << ", correct = " << combinationAB[i]
                << ", got = " << it.Get() << std::endl;
      return EXIT_FAILURE;
    }
  }

  // Test all three input images

  // Connect third input image
  filter->SetInput(2, inputImageC);

  // Execute the filter
  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  // Compare to correct results
  it = IteratorType(outputImage, outputImage->GetBufferedRegion());
  for (unsigned int i = 0; i < 8; ++i, ++it)
  {
    if (combinationABC[i] != it.Get())
    {
      std::cout << "Incorrect result using images A,B,C: i = " << i << ", correct = " << combinationABC[i]
                << ", got = " << it.Get() << std::endl;
      return EXIT_FAILURE;
    }
  }


  std::cout << "Prior probabilities: " << filter->GetPriorProbabilities() << std::endl;
  std::cout << "Confusion matrix 0 " << std::endl << filter->GetConfusionMatrix(0) << std::endl;
  std::cout << "Confusion matrix 1 " << std::endl << filter->GetConfusionMatrix(1) << std::endl;
  std::cout << "Confusion matrix 2 " << std::endl << filter->GetConfusionMatrix(2) << std::endl;

  std::cout << "Test finished." << std::endl;
  return EXIT_SUCCESS;
}