1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCurvesLevelSetFunction_h
#define itkCurvesLevelSetFunction_h
#include "itkSegmentationLevelSetFunction.h"
namespace itk
{
/** \class CurvesLevelSetFunction
*
* \brief This function is used in CurvesLevelSetImageFilter to
* segment structures in images based on user supplied edge potential map.
*
* \par CurvesLevelSetFunction is a subclass of the generic LevelSetFunction.
* It is useful for segmentations based on a user supplied edge potential map which
* has values close to zero in regions near edges (or high image gradient) and values
* close to one in regions with relatively constant intensity. Typically, the edge
* potential map is a function of the gradient, for example:
*
* \f[ g(I) = 1 / ( 1 + | (\nabla * G)(I)| ) \f]
* \f[ g(I) = \exp^{-|(\nabla * G)(I)|} \f]
*
* where \f$ I \f$ is image intensity and
* \f$ (\nabla * G) \f$ is the derivative of Gaussian operator.
*
* \par In this function both the propagation term \f$ P(\mathbf{x}) \f$
* and the curvature spatial modifier term $\f$ Z(\mathbf{x}) \f$ are taken directly
* from the edge potential image. The edge potential image is set via the
* SetFeatureImage() method. An advection term \f$ A(\mathbf{x}) \f$ is constructed
* from the negative gradient of the edge potential image. This term behaves like
* a doublet attracting the contour to the edges.
*
* \par This implementation is based on:
* L. Lorigo, O. Faugeras, W.E.L. Grimson, R. Keriven, R. Kikinis, A. Nabavi,
* and C.-F. Westin, Curves: Curve evolution for vessel segmentation.
* Medical Image Analysis, 5:195-206, 2001.
*
* \sa LevelSetFunction
* \sa SegmentationLevelSetImageFunction
* \sa GeodesicActiveContourLevelSetImageFilter
*
* \ingroup FiniteDifferenceFunctions
* \ingroup ITKLevelSets
*/
template <typename TImageType, typename TFeatureImageType = TImageType>
class ITK_TEMPLATE_EXPORT CurvesLevelSetFunction : public SegmentationLevelSetFunction<TImageType, TFeatureImageType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(CurvesLevelSetFunction);
/** Standard class type aliases. */
using Self = CurvesLevelSetFunction;
using Superclass = SegmentationLevelSetFunction<TImageType, TFeatureImageType>;
using SuperSuperclass = LevelSetFunction<TImageType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using FeatureImageType = TFeatureImageType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(CurvesLevelSetFunction);
/** Extract some parameters from the superclass. */
using PixelType = typename SuperSuperclass::PixelType;
using typename Superclass::ImageType;
using typename Superclass::NeighborhoodType;
using typename Superclass::ScalarValueType;
using typename Superclass::FeatureScalarType;
using typename Superclass::RadiusType;
using FloatOffsetType = typename SuperSuperclass::FloatOffsetType;
using GlobalDataStruct = typename SuperSuperclass::GlobalDataStruct;
using typename Superclass::VectorImageType;
/** Extract some parameters from the superclass. */
static constexpr unsigned int ImageDimension = Superclass::ImageDimension;
/** Compute speed image from feature image. */
void
CalculateSpeedImage() override;
/** Compute the advection field from feature image. */
void
CalculateAdvectionImage() override;
/** The curvature speed is same as the propagation speed. */
ScalarValueType
CurvatureSpeed(const NeighborhoodType & neighborhood,
const FloatOffsetType & offset,
GlobalDataStruct * gd) const override
{
return this->PropagationSpeed(neighborhood, offset, gd);
}
/** Set/Get the sigma for the Gaussian kernel used to compute the gradient
* of the feature image needed for the advection term of the equation. */
void
SetDerivativeSigma(const double v)
{
m_DerivativeSigma = v;
}
double
GetDerivativeSigma()
{
return m_DerivativeSigma;
}
void
Initialize(const RadiusType & r) override;
protected:
CurvesLevelSetFunction()
{
// Curvature term is the minimal curvature.
this->UseMinimalCurvatureOn();
this->SetAdvectionWeight(NumericTraits<ScalarValueType>::OneValue());
this->SetPropagationWeight(NumericTraits<ScalarValueType>::OneValue());
this->SetCurvatureWeight(NumericTraits<ScalarValueType>::OneValue());
}
~CurvesLevelSetFunction() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override
{
Superclass::PrintSelf(os, indent);
os << indent << "DerivativeSigma: " << m_DerivativeSigma << std::endl;
}
private:
/** Slices for the ND neighborhood. */
std::slice x_slice[ImageDimension];
/** The offset of the center pixel in the neighborhood. */
OffsetValueType m_Center{ 0 };
/** Stride length along the y-dimension. */
OffsetValueType m_xStride[ImageDimension]{};
double m_DerivativeSigma{ 1.0 };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkCurvesLevelSetFunction.hxx"
#endif
#endif
|