1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkNarrowBandCurvesLevelSetImageFilter_h
#define itkNarrowBandCurvesLevelSetImageFilter_h
#include "itkNarrowBandLevelSetImageFilter.h"
#include "itkCurvesLevelSetFunction.h"
namespace itk
{
/** \class NarrowBandCurvesLevelSetImageFilter
* \brief Segments structures in images based on user supplied edge potential map.
*
* \par IMPORTANT
* The NarrowBandLevelSetImageFilter class and the
* CurvesLevelSetFunction class contain additional information necessary
* to the full understanding of how to use this filter.
*
* \par OVERVIEW
* This class is a level set method segmentation filter. An initial contour
* is propagated outwards (or inwards) until it sticks to the shape boundaries.
* This is done by using a level set speed function based on a user supplied
* edge potential map.
*
* \par INPUTS
* This filter requires two inputs. The first input is a initial level set.
* The initial level set is a real image which contains the initial contour/surface
* as the zero level set. For example, a signed distance function from the initial
* contour/surface is typically used. Unlike the simpler ShapeDetectionLevelSetImageFilter
* the initial contour does not have to lie wholly within the shape to be segmented.
* The initial contour is allow to overlap the shape boundary. The extra advection term
* in the update equation behaves like a doublet and attracts the contour to the boundary.
* This approach for segmentation follows that of Lorigo et al (2001).
*
* \par
* The second input is the feature image. For this filter, this is the edge
* potential map. General characteristics of an edge potential map is that
* it has values close to zero in regions near the edges and values close
* to one inside the shape itself. Typically, the edge potential map is compute
* from the image gradient, for example:
*
* \f[ g(I) = 1 / ( 1 + | (\nabla * G)(I)| ) \f]
* \f[ g(I) = \exp^{-|(\nabla * G)(I)|} \f]
*
* where \f$ I \f$ is image intensity and
* \f$ (\nabla * G) \f$ is the derivative of Gaussian operator.
*
* \par
* See NarrowBandLevelSetImageFilter and NarrowBandImageFilterBase
* for more information on Inputs.
*
* \par PARAMETERS
* The method SetUseNegativeFeatures() can be used to switch from propagating inwards (false)
* versus propagating outwards (true).
*
* This implementation allows the user to set the weights between the propagation, advection
* and curvature term using methods SetPropagationScaling(), SetAdvectionScaling(),
* SetCurvatureScaling(). In general, the larger the CurvatureScaling, the smoother the
* resulting contour. To follow the implementation in Caselles's paper,
* set the PropagationScaling to \f$ c \f$ (the inflation or balloon force) and
* AdvectionScaling and CurvatureScaling both to 1.0.
*
* \par OUTPUTS
* The filter outputs a single, scalar, real-valued image.
* Negative values in the output image are inside the segmented region
* and positive values in the image are outside of the inside region. The
* zero crossings of the image correspond to the position of the level set
* front.
*
* \par REFERENCES
* L. Lorigo, O. Faugeras, W.E.L. Grimson, R. Keriven, R. Kikinis, A. Nabavi,
* and C.-F. Westin, Curves: Curve evolution for vessel segmentation.
* Medical Image Analysis, 5:195-206, 2001.
*
* \par
* See NarrowBandImageFilterBase and
* NarrowBandLevelSetImageFilter for more information.
*
* \sa NarrowBandLevelSetImageFilter
* \sa CurvesLevelSetFunction
*
* \ingroup LevelSetSegmentation
* \ingroup ITKLevelSets
*/
template <typename TInputImage, typename TFeatureImage, typename TOutputPixelType = float>
class ITK_TEMPLATE_EXPORT NarrowBandCurvesLevelSetImageFilter
: public NarrowBandLevelSetImageFilter<TInputImage,
TFeatureImage,
TOutputPixelType,
Image<TOutputPixelType, TInputImage::ImageDimension>>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(NarrowBandCurvesLevelSetImageFilter);
/** Standard class type aliases */
using Self = NarrowBandCurvesLevelSetImageFilter;
using Superclass = NarrowBandLevelSetImageFilter<TInputImage,
TFeatureImage,
TOutputPixelType,
Image<TOutputPixelType, TInputImage::ImageDimension>>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Inherited type alias from the superclass. */
using typename Superclass::ValueType;
using typename Superclass::OutputImageType;
using typename Superclass::FeatureImageType;
/** Type of the segmentation function */
using CurvesFunctionType = CurvesLevelSetFunction<OutputImageType, FeatureImageType>;
using CurvesFunctionPointer = typename CurvesFunctionType::Pointer;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(NarrowBandCurvesLevelSetImageFilter);
/** Method for creation through the object factory */
itkNewMacro(Self);
/** Set the value of sigma used to compute derivatives */
void
SetDerivativeSigma(float value)
{
m_CurvesFunction->SetDerivativeSigma(value);
this->Modified();
}
float
GetDerivativeSigma() const
{
return m_CurvesFunction->GetDerivativeSigma();
}
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<TOutputPixelType>));
// End concept checking
#endif
protected:
~NarrowBandCurvesLevelSetImageFilter() override = default;
NarrowBandCurvesLevelSetImageFilter();
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Overridden from Superclass to handle the case when Propagation
* Scaling is zero.*/
void
GenerateData() override;
private:
CurvesFunctionPointer m_CurvesFunction{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkNarrowBandCurvesLevelSetImageFilter.hxx"
#endif
#endif
|