1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkNarrowBandThresholdSegmentationLevelSetImageFilter_h
#define itkNarrowBandThresholdSegmentationLevelSetImageFilter_h
#include "itkNarrowBandLevelSetImageFilter.h"
#include "itkThresholdSegmentationLevelSetFunction.h"
namespace itk
{
/** \class NarrowBandThresholdSegmentationLevelSetImageFilter
* \brief Segments structures in images based on intensity values.
*
* \par IMPORTANT
* The SegmentationLevelSetImageFilter class and the
* ThresholdSegmentationLevelSetFunction class contain additional information
* necessary to the full understanding of how to use this filter.
*
* \par OVERVIEW
* This class is a level set method segmentation filter. It constructs a
* speed function which is close to zero at the upper and lower bounds of an
* intensity window, effectively locking the propagating front onto those
* edges. Elsewhere, the front will propagate quickly.
*
* \par INPUTS
* This filter requires two inputs. The first input is a seed
* image. This seed image must contain an isosurface that you want to use as the
* seed for your segmentation. It can be a binary, graylevel, or floating
* point image. The only requirement is that it contain a closed isosurface
* that you will identify as the seed by setting the IsosurfaceValue parameter
* of the filter. For a binary image you will want to set your isosurface
* value halfway between your on and off values (i.e. for 0's and 1's, use an
* isosurface value of 0.5).
*
* \par
* The second input is the feature image. This is the image from which the
* speed function will be calculated. For most applications, this is the
* image that you want to segment. The desired isosurface in your seed image
* should lie within the region of your feature image that you are trying to
* segment. Note that this filter does no preprocessing of the feature image
* before thresholding.
*
* \par
* See SegmentationLevelSetImageFilter for more information on Inputs.
*
* \par OUTPUTS
* The filter outputs a single, scalar, real-valued image.
* Positive values in the output image are inside the segmented region
* and negative values in the image are outside of the inside region. The
* zero crossings of the image correspond to the position of the level set
* front.
*
* \par
* See SparseFieldLevelSetImageFilter and
* SegmentationLevelSetImageFilter for more information.
*
* \par PARAMETERS
* In addition to parameters described in SegmentationLevelSetImageFilter,
* this filter adds the UpperThreshold and LowerThreshold. See
* ThresholdSegmentationLevelSetFunction for a description of how these values
* affect the segmentation.
*
* \sa SegmentationLevelSetImageFilter
* \sa ThresholdSegmentationLevelSetFunction,
* \sa SparseFieldLevelSetImageFilter
* \ingroup ITKLevelSets
*/
template <typename TInputImage, typename TFeatureImage, typename TOutputPixelType = float>
class ITK_TEMPLATE_EXPORT NarrowBandThresholdSegmentationLevelSetImageFilter
: public NarrowBandLevelSetImageFilter<TInputImage,
TFeatureImage,
TOutputPixelType,
Image<TOutputPixelType, TInputImage::ImageDimension>>
{
public:
/** Standard class type aliases */
using Self = NarrowBandThresholdSegmentationLevelSetImageFilter;
using Superclass = NarrowBandLevelSetImageFilter<TInputImage,
TFeatureImage,
TOutputPixelType,
Image<TOutputPixelType, TInputImage::ImageDimension>>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Inherited type alias from the superclass. */
using typename Superclass::ValueType;
using typename Superclass::OutputImageType;
using typename Superclass::FeatureImageType;
/** Type of the segmentation function */
using ThresholdFunctionType = ThresholdSegmentationLevelSetFunction<OutputImageType, FeatureImageType>;
using ThresholdFunctionPointer = typename ThresholdFunctionType::Pointer;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(NarrowBandThresholdSegmentationLevelSetImageFilter);
/** Method for creation through the object factory */
itkNewMacro(Self);
/** Get/Set the threshold values that will be used to calculate the speed
function. */
void
SetUpperThreshold(ValueType v)
{
this->m_ThresholdFunction->SetUpperThreshold(v);
this->Modified();
}
void
SetLowerThreshold(ValueType v)
{
this->m_ThresholdFunction->SetLowerThreshold(v);
this->Modified();
}
ValueType
GetUpperThreshold() const
{
return m_ThresholdFunction->GetUpperThreshold();
}
ValueType
GetLowerThreshold() const
{
return m_ThresholdFunction->GetLowerThreshold();
}
/** Set/Get the weight applied to the edge (Laplacian) attractor in the speed
* term function. Zero will turn this term off. */
void
SetEdgeWeight(ValueType v)
{
this->m_ThresholdFunction->SetEdgeWeight(v);
this->Modified();
}
ValueType
GetEdgeWeight() const
{
return m_ThresholdFunction->GetEdgeWeight();
}
/** Anisotropic diffusion is applied to the FeatureImage before calculating
* the Laplacian (edge) term. This method sets/gets the number of diffusion
* iterations. */
void
SetSmoothingIterations(int v)
{
this->m_ThresholdFunction->SetSmoothingIterations(v);
this->Modified();
}
int
GetSmoothingIterations() const
{
return m_ThresholdFunction->GetSmoothingIterations();
}
/** Anisotropic diffusion is applied to the FeatureImage before calculating
* the Laplacian (edge) term. This method sets/gets the diffusion time
* step. */
void
SetSmoothingTimeStep(ValueType v)
{
this->m_ThresholdFunction->SetSmoothingTimeStep(v);
this->Modified();
}
ValueType
GetSmoothingTimeStep() const
{
return m_ThresholdFunction->GetSmoothingTimeStep();
}
/** Anisotropic diffusion is applied to the FeatureImage before calculating
* the Laplacian (edge) term. This method sets/gets the smoothing
* conductance. */
void
SetSmoothingConductance(ValueType v)
{
this->m_ThresholdFunction->SetSmoothingConductance(v);
this->Modified();
}
ValueType
GetSmoothingConductance() const
{
return m_ThresholdFunction->GetSmoothingConductance();
}
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<TOutputPixelType>));
// End concept checking
#endif
protected:
~NarrowBandThresholdSegmentationLevelSetImageFilter() override = default;
NarrowBandThresholdSegmentationLevelSetImageFilter();
void
PrintSelf(std::ostream & os, Indent indent) const override;
NarrowBandThresholdSegmentationLevelSetImageFilter(const Self &); // purposely
// not impl.
void
operator=(const Self &); // purposely
// not
// implemented
private:
ThresholdFunctionPointer m_ThresholdFunction{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkNarrowBandThresholdSegmentationLevelSetImageFilter.hxx"
#endif
#endif
|