File: itkNormalVectorDiffusionFunction.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (187 lines) | stat: -rw-r--r-- 6,829 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkNormalVectorDiffusionFunction_h
#define itkNormalVectorDiffusionFunction_h

#include "itkNormalVectorFunctionBase.h"
#include "itkNumericTraits.h"
#include <cmath>

namespace itk
{
/**
 * \class NormalVectorDiffusionFunction
 *
 * \brief This class defines all the necessary functionality for performing
 * isotropic and anisotropic diffusion operations on vector neighborhoods from
 * a sparse image.
 *
 * \par
 * This class implements the actual computations for performing isotropic and
 * anisotropic diffusion operations on a neighborhood of unit length
 * vectors. Moreover, this processing is intrinsic to a manifold as specified
 * by the ManifoldNormal member variables in the nodes of the sparse image.
 *
 * \par
 * Since the only difference between isotropic and anisotropic diffusion is the
 * execution of 1 extra line of code, we have implemented both in this class
 * and made the choice between the two depend on a parameter (see below).

 * \par PARAMETERS
 * The choice between is isotropic/anisotropic diffusion is made by the
 * parameter NormalProcessType. A value of 0 corresponds to isotropic diffusion
 * whereas a value of 1 corresponds to anisotropic diffusion. If anisotropic
 * diffusion is chosen, the parameter ConductanceParameter should be set. This
 * conductance parameter determines the level of feature preservation.
 *
 * \par IMPORTANT
 * This class works on SparseImage neighborhoods. Before using this class
 * please read the documentation for SparseImage. Also the documentation for
 * ImplicitManifoldNormalVectorField class will be helpful in understanding how
 * to use this class as a function object.
 * \ingroup ITKLevelSets
 */
template <typename TSparseImageType>
class ITK_TEMPLATE_EXPORT NormalVectorDiffusionFunction : public NormalVectorFunctionBase<TSparseImageType>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(NormalVectorDiffusionFunction);

  /** Standard class type alias. */
  using Self = NormalVectorDiffusionFunction;
  using Superclass = NormalVectorFunctionBase<TSparseImageType>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(NormalVectorDiffusionFunction);

  /** Image dimension derived from the superclass. */
  static constexpr unsigned int ImageDimension = Superclass::ImageDimension;

  /** Standard New macro. */
  itkNewMacro(Self);

  /** Typedefs from the superclass. */
  using typename Superclass::TimeStepType;
  using typename Superclass::RadiusType;
  using typename Superclass::NeighborhoodType;
  using typename Superclass::NeighborhoodScalesType;
  using typename Superclass::FloatOffsetType;
  using typename Superclass::IndexType;
  using typename Superclass::SparseImageType;
  using typename Superclass::NodeType;
  using typename Superclass::NodeValueType;
  using typename Superclass::NormalVectorType;

  /** This method is used to choose between isotropic/anisotropic filtering. A
      parameter value of 0 indicates isotropic diffusion and is the
      default. Parameter value 1 is anisotropic diffusion. When using
      anisotropic diffusion the conductance parameter should also be set. */
  void
  SetNormalProcessType(int npt)
  {
    m_NormalProcessType = npt;
  }

  /** This method returns the isotropic/anisotropic filtering parameter. */
  int
  GetNormalProcessType() const
  {
    return m_NormalProcessType;
  }

  /** This method sets the conductance parameter used in anisotropic
   * filtering. Useful values for processing 2D and 3D shapes are between
   *  0.1 and 0.25. Lower values preserve more shape features, higher values
   *  smooth more. As the conductance parameter large, the processing becomes
   *  isotropic. Default is 0. */
  void
  SetConductanceParameter(NodeValueType cp)
  {
    m_ConductanceParameter = cp + static_cast<NodeValueType>(0.001);
    // we add a minimum conductance to avoid divide by zero
    // can make this a parameter.
    m_FluxStopConstant = static_cast<NodeValueType>(-1.0 / (m_ConductanceParameter * m_ConductanceParameter));
  }

  /** This method returns the conductance parameter. */
  NodeValueType
  GetConductanceParameter() const
  {
    return m_ConductanceParameter;
  }

  /** This method returns the internal variable FluxStopConstant. */
  NodeValueType
  GetFluxStopConstant() const
  {
    return m_FluxStopConstant;
  }

  /** This function is called from LevelSetNormalImageFilter for all of the
   *  nodes to compute and store the flux vectors (first derivatives of the
   *  normal vectors. ComputeUpdateNormal then takes derivatives of the flux
   *  vectors. This way we avoid repeating the same flux computations. */
  void
  PrecomputeSparseUpdate(NeighborhoodType & it) const override;

  /** The actual update rule for the normal vectors. */
  NormalVectorType
  ComputeSparseUpdate(NeighborhoodType & it, void * globalData, const FloatOffsetType & offset) const override;

protected:
  NormalVectorDiffusionFunction();
  ~NormalVectorDiffusionFunction() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** The method called in anisotropic diffusion to inhibit diffusion across
      areas with large curvature. */
  NodeValueType
  FluxStopFunction(const NodeValueType v) const
  {
    // the slow exp function could be replaced with a lookup table
    if (v <= 0.0)
    {
      return NumericTraits<NodeValueType>::OneValue();
    }
    else
    {
      return static_cast<NodeValueType>(std::exp(m_FluxStopConstant * v));
    }
  }

private:
  /** The conductance parameter used for anisotropic diffusion. */
  NodeValueType m_ConductanceParameter{};

  /** The internal variable used in the FluxStopFunction. It is computed from
   * ConductanceParameter. */
  NodeValueType m_FluxStopConstant{};

  /** The isotropic/anisotropic filtering choice parameter. */
  int m_NormalProcessType{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkNormalVectorDiffusionFunction.hxx"
#endif

#endif