File: itkShapeDetectionLevelSetImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (154 lines) | stat: -rw-r--r-- 6,184 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkShapeDetectionLevelSetImageFilter_h
#define itkShapeDetectionLevelSetImageFilter_h

#include "itkSegmentationLevelSetImageFilter.h"
#include "itkShapeDetectionLevelSetFunction.h"

namespace itk
{
/** \class ShapeDetectionLevelSetImageFilter
 * \brief Segments structures in images based on a user supplied edge potential map.
 *
 * \par IMPORTANT
 * The SegmentationLevelSetImageFilter class and the
 * ShapeDetectionLevelSetFunction class contain additional information necessary
 * to gain full understanding of how to use this filter.
 *
 * \par OVERVIEW
 * This class is a level set method segmentation filter. An initial contour
 * is propagated outwards (or inwards) until it ''sticks'' to the shape boundaries.
 * This is done by using a level set speed function based on a user supplied
 * edge potential map. This approach for segmentation follows that of
 * Malladi et al (1995).
 *
 * \par INPUTS
 * This filter requires two inputs.  The first input is a initial level set.
 * The initial level set is a real image which contains the initial contour/surface
 * as the zero level set. For example, a signed distance function from the initial
 * contour/surface is typically used. Note that for this algorithm the initial contour
 * has to be wholly within (or wholly outside) the structure to be segmented.
 *
 * \par
 * The second input is the feature image.  For this filter, this is the edge
 * potential map. General characteristics of an edge potential map is that
 * it has values close to zero in regions near the edges and values close
 * to one inside the shape itself. Typically, the edge potential map is compute
 * from the image gradient, for example:
 *
 * \f[ g(I) = 1 / ( 1 + | (\nabla * G)(I)| ) \f]
 * \f[ g(I) = \exp^{-|(\nabla * G)(I)|} \f]
 *
 * where \f$ I \f$ is image intensity and
 * \f$ (\nabla * G) \f$ is the derivative of Gaussian operator.
 *
 * \par
 * See SegmentationLevelSetImageFilter and SparseFieldLevelSetImageFilter
 * for more information on Inputs.
 *
 * \par PARAMETERS
 * The PropagationScaling parameter can be used to switch from propagation outwards
 * (POSITIVE scaling parameter) versus propagating inwards (NEGATIVE scaling
 * parameter).
 *
 * The smoothness of the resulting contour/surface can be adjusted using a combination
 * of PropagationScaling and CurvatureScaling parameters. The larger the CurvatureScaling
 * parameter, the smoother the resulting contour. The CurvatureScaling parameter should
 * be non-negative for proper operation of this algorithm.
 * To follow the implementation in Malladi et al paper,
 * set the PropagationScaling to \f$\pm 1.0\f$ and CurvatureScaling to \f$ \epsilon \f$.
 *
 * Note that there is no advection term for this filter. Setting the
 * advection scaling will have no effect.
 *
 * \par OUTPUTS
 * The filter outputs a single, scalar, real-valued image.
 * Negative values in the output image represent the inside of the segmented region
 * and positive values in the image represent the outside of the segmented region.  The
 * zero crossings of the image correspond to the position of the propagating
 * front.
 *
 * \par
 * See SparseFieldLevelSetImageFilter and
 * SegmentationLevelSetImageFilter for more information.
 *
 * \par REFERENCES
 * \par
 *    "Shape Modeling with Front Propagation: A Level Set Approach",
 *    R. Malladi, J. A. Sethian and B. C. Vermuri.
 *    IEEE Trans. on Pattern Analysis and Machine Intelligence,
 *    Vol 17, No. 2, pp 158-174, February 1995
 *
 * \sa SegmentationLevelSetImageFilter
 * \sa ShapeDetectionLevelSetFunction
 * \sa SparseFieldLevelSetImageFilter
 *
 * \ingroup LevelSetSegmentation
 * \ingroup ITKLevelSets
 */
template <typename TInputImage, typename TFeatureImage, typename TOutputPixelType = float>
class ITK_TEMPLATE_EXPORT ShapeDetectionLevelSetImageFilter
  : public SegmentationLevelSetImageFilter<TInputImage, TFeatureImage, TOutputPixelType>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ShapeDetectionLevelSetImageFilter);

  /** Standard class type aliases */
  using Self = ShapeDetectionLevelSetImageFilter;
  using Superclass = SegmentationLevelSetImageFilter<TInputImage, TFeatureImage, TOutputPixelType>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Inherited type alias from the superclass. */
  using typename Superclass::ValueType;
  using typename Superclass::OutputImageType;
  using typename Superclass::FeatureImageType;

  /** Type of the segmentation function */
  using ShapeDetectionFunctionType = ShapeDetectionLevelSetFunction<OutputImageType, FeatureImageType>;
  using ShapeDetectionFunctionPointer = typename ShapeDetectionFunctionType::Pointer;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ShapeDetectionLevelSetImageFilter);

  /** Method for creation through the object factory */
  itkNewMacro(Self);

protected:
  ~ShapeDetectionLevelSetImageFilter() override = default;
  ShapeDetectionLevelSetImageFilter();

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Overridden from Superclass to handle the case when PropagationScaling is zero
   * and CurvatureScaling is non-zero.*/
  void
  GenerateData() override;

private:
  ShapeDetectionFunctionPointer m_ShapeDetectionFunction{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkShapeDetectionLevelSetImageFilter.hxx"
#endif

#endif