File: itkShapePriorMAPCostFunction.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (168 lines) | stat: -rw-r--r-- 6,416 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkShapePriorMAPCostFunction_h
#define itkShapePriorMAPCostFunction_h

#include "itkShapePriorMAPCostFunctionBase.h"
#include "itkGaussianKernelFunction.h"

namespace itk
{
/** \class ShapePriorMAPCostFunction
 * \brief Represents the maximum aprior (MAP) cost function used
 * ShapePriorSegmentationLevelSetImageFilter to estimate the shape parameters.
 *
 * This class follows the shape and pose parameters estimation developed in [1].
 * Note that this class returns the negative log of the MAP function.
 * Using the negative function make this cost function compatible
 * with generic optimizers which seeks the minimum of a cost function.
 *
 * This class has two template parameters, the feature image type representing the
 * edge potential map and the pixel type used to
 * represent the output level set in the ShapePriorSegmentationLevelSetImageFilter.
 *
 * \sa ShapePriorSegmentationLevelSetImageFilter
 *
 * \par REFERENCES
 * \par
 * [1] Leventon, M.E. et al. "Statistical Shape Influence in Geodesic Active Contours", CVPR 2000.
 *
 *
 * \ingroup Numerics Optimizers
 * \ingroup ITKLevelSets
 */
template <typename TFeatureImage, typename TOutputPixel>
class ITK_TEMPLATE_EXPORT ShapePriorMAPCostFunction : public ShapePriorMAPCostFunctionBase<TFeatureImage, TOutputPixel>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ShapePriorMAPCostFunction);

  /** Standard class type aliases. */
  using Self = ShapePriorMAPCostFunction;
  using Superclass = ShapePriorMAPCostFunctionBase<TFeatureImage, TOutputPixel>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ShapePriorMAPCostFunction);

  /**  ParametersType type alias.
   *  It defines a position in the optimization search space. */
  using typename Superclass::ParametersType;

  /** Type of the feature image representing the edge potential map. */
  using typename Superclass::FeatureImageType;
  using typename Superclass::FeatureImagePointer;

  /** Type of the return measure value. */
  using typename Superclass::MeasureType;

  /** Dimension constant. */
  static constexpr unsigned int ImageDimension = TFeatureImage::ImageDimension;

  /** Type of pixel used to represent the level set. */
  using typename Superclass::PixelType;

  /** Type of node used to represent the active region around the zero set. */
  using typename Superclass::NodeType;

  /** Type of container used to store the level set nodes. */
  using typename Superclass::NodeContainerType;

  /** Type of the shape signed distance function. */
  using typename Superclass::ShapeFunctionType;

  /** Type of the array for storing shape parameter mean and standard deviation.
   * FIXME: should be templated.
   */
  using ArrayType = Array<double>;

  /** Set/Get the array of shape parameters mean. */
  itkSetMacro(ShapeParameterMeans, ArrayType);
  itkGetConstMacro(ShapeParameterMeans, ArrayType);

  /** Set/Get the array of shape parameters standard deviation. */
  itkSetMacro(ShapeParameterStandardDeviations, ArrayType);
  itkGetConstMacro(ShapeParameterStandardDeviations, ArrayType);

  /** Set/Get the weights for each term. Default is a vector of all ones.
   * The weights are applied to terms in the following order:
   * LogInsideTerm, LogGradientTerm, LogShapePriorTerm and
   * LogPosePriorTerm. */
  using WeightsType = FixedArray<double, 4>;
  itkSetMacro(Weights, WeightsType);
  itkGetConstReferenceMacro(Weights, WeightsType);

  /** Compute the inside term component of the MAP cost function.
   * In particular, the method sums the number of pixels inside
   * the current contour (defined by nodes of the active region
   * that are less than zero) which are outside the shape
   * specified by the input parameters. */
  MeasureType
  ComputeLogInsideTerm(const ParametersType & parameters) const override;

  /** Compute the gradient term component of the MAP cost function.
   * In particular, this method assume that ( 1 - FeatureImage ) approximates
   * a Gaussian (zero mean, unit variance) along the normal of the evolving contour.
   * The gradient term is then given by a Laplacian of the goodness of fit of
   * the Gaussian. */
  MeasureType
  ComputeLogGradientTerm(const ParametersType & parameters) const override;

  /** Compute the shape prior component of the MAP cost function.
   * In particular, the method assumes that the shape parameters comes from
   * independent Gaussian distributions defined by the ShapeParameterMeans
   * and ShapeParameterVariances array. */
  MeasureType
  ComputeLogShapePriorTerm(const ParametersType & parameters) const override;

  /** Compute the pose prior component of the MAP cost function.
   * In particular, this method assumes that the pose parameters are
   * uniformly distributed and returns a constant of zero. */
  MeasureType
  ComputeLogPosePriorTerm(const ParametersType & parameters) const override;

  /** Initialize the cost function by making sure that all the components
   *  are present. */
  void
  Initialize() override;

protected:
  ShapePriorMAPCostFunction();
  ~ShapePriorMAPCostFunction() override = default;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

private:
  ArrayType   m_ShapeParameterMeans{};
  ArrayType   m_ShapeParameterStandardDeviations{};
  WeightsType m_Weights{};

  typename GaussianKernelFunction<double>::Pointer m_GaussianFunction{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkShapePriorMAPCostFunction.hxx"
#endif

#endif