File: itkShapePriorSegmentationLevelSetFunction.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (132 lines) | stat: -rw-r--r-- 4,101 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkShapePriorSegmentationLevelSetFunction_hxx
#define itkShapePriorSegmentationLevelSetFunction_hxx

#include "itkMath.h"

namespace itk
{

template <typename TImageType, typename TFeatureImageType>
ShapePriorSegmentationLevelSetFunction<TImageType, TFeatureImageType>::ShapePriorSegmentationLevelSetFunction()
{
  m_ShapeFunction = nullptr;
  m_ShapePriorWeight = ScalarValueType{};
}

template <typename TImageType, typename TFeatureImageType>
void
ShapePriorSegmentationLevelSetFunction<TImageType, TFeatureImageType>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  itkPrintSelfObjectMacro(ShapeFunction);

  os << indent
     << "ShapePriorWeight: " << static_cast<typename NumericTraits<ScalarValueType>::PrintType>(m_ShapePriorWeight)
     << std::endl;
}

template <typename TImageType, typename TFeatureImageType>
auto
ShapePriorSegmentationLevelSetFunction<TImageType, TFeatureImageType>::ComputeUpdate(
  const NeighborhoodType & neighborhood,
  void *                   gd,
  const FloatOffsetType &  offset) -> PixelType
{
  // Compute the generic level set update using superclass
  PixelType value = this->Superclass::ComputeUpdate(neighborhood, gd, offset);

  // Add the shape prior term
  if (m_ShapeFunction && Math::NotExactlyEquals(m_ShapePriorWeight, ScalarValueType{}))
  {
    IndexType                               idx = neighborhood.GetIndex();
    ContinuousIndex<double, ImageDimension> cdx;
    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      cdx[i] = static_cast<double>(idx[i]) - offset[i];
    }
    typename ShapeFunctionType::PointType point;
    this->GetFeatureImage()->TransformContinuousIndexToPhysicalPoint(cdx, point);

    ScalarValueType shape_term =
      m_ShapePriorWeight * (m_ShapeFunction->Evaluate(point) - neighborhood.GetCenterPixel());

    value += shape_term;

    // collect max change to be used for calculating the time step
    auto * globalData = (ShapePriorGlobalDataStruct *)gd;
    globalData->m_MaxShapePriorChange = std::max(globalData->m_MaxShapePriorChange, itk::Math::abs(shape_term));
  }

  return value;
}

template <typename TImageType, typename TFeatureImageType>
auto
ShapePriorSegmentationLevelSetFunction<TImageType, TFeatureImageType>::ComputeGlobalTimeStep(void * gd) const
  -> TimeStepType
{
  TimeStepType dt;

  auto * d = (ShapePriorGlobalDataStruct *)gd;

  d->m_MaxAdvectionChange += d->m_MaxPropagationChange + d->m_MaxShapePriorChange;

  if (itk::Math::abs(d->m_MaxCurvatureChange) > 0.0)
  {
    if (d->m_MaxAdvectionChange > 0.0)
    {
      dt = std::min((this->m_WaveDT / d->m_MaxAdvectionChange), (this->m_DT / d->m_MaxCurvatureChange));
    }
    else
    {
      dt = this->m_DT / d->m_MaxCurvatureChange;
    }
  }
  else
  {
    if (d->m_MaxAdvectionChange > 0.0)
    {
      dt = this->m_WaveDT / d->m_MaxAdvectionChange;
    }
    else
    {
      dt = 0.0;
    }
  }

  double maxScaleCoefficient = 0.0;
  for (unsigned int i = 0; i < ImageDimension; ++i)
  {
    maxScaleCoefficient = std::max(this->m_ScaleCoefficients[i], maxScaleCoefficient);
  }
  dt /= maxScaleCoefficient;

  // reset the values
  d->m_MaxAdvectionChange = 0;
  d->m_MaxPropagationChange = 0;
  d->m_MaxCurvatureChange = 0;
  d->m_MaxShapePriorChange = 0;

  return dt;
}
} // end namespace itk

#endif