File: itkSparseFieldFourthOrderLevelSetImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (251 lines) | stat: -rw-r--r-- 8,816 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSparseFieldFourthOrderLevelSetImageFilter_hxx
#define itkSparseFieldFourthOrderLevelSetImageFilter_hxx

#include "itkNeighborhoodIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkNumericTraits.h"

namespace itk
{
template <typename TInputImage, typename TOutputImage>
const SizeValueType SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::m_NumVertex =
  1 << ImageDimension;

template <typename TInputImage, typename TOutputImage>
const typename SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::ValueType
  SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::m_DimConst =
    static_cast<ValueType>(2.0 / m_NumVertex);

template <typename TInputImage, typename TOutputImage>
SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::SparseFieldFourthOrderLevelSetImageFilter()
{
  m_RefitIteration = 0;
  m_LevelSetFunction = nullptr;
  m_ConvergenceFlag = false;

  this->SetIsoSurfaceValue(0);
  m_MaxRefitIteration = 100;
  m_MaxNormalIteration = 25;
  m_RMSChangeNormalProcessTrigger = ValueType{};
  m_CurvatureBandWidth = static_cast<ValueType>(ImageDimension) + 0.5;
  m_NormalProcessType = 0;
  m_NormalProcessConductance = ValueType{};
  m_NormalProcessUnsharpFlag = false;
  m_NormalProcessUnsharpWeight = ValueType{};
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "MaxRefitIteration: " << m_MaxRefitIteration << std::endl;
  os << indent << "MaxNormalIteration: " << m_MaxNormalIteration << std::endl;
  os << indent << "CurvatureBandWidth: " << m_CurvatureBandWidth << std::endl;

  os << indent << "RMSChangeNormalProcessTrigger: " << m_RMSChangeNormalProcessTrigger << std::endl;

  os << indent << "NormalProcessType: " << m_NormalProcessType << std::endl;

  os << indent << "NormalProcessConductance: " << m_NormalProcessConductance << std::endl;

  os << indent << "NormalProcessUnsharpFlag: " << m_NormalProcessUnsharpFlag << std::endl;

  os << indent << "NormalProcessUnsharpWeight: " << m_NormalProcessUnsharpWeight << std::endl;
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::SetLevelSetFunction(LevelSetFunctionType * lsf)
{
  m_LevelSetFunction = lsf;
  Superclass::SetDifferenceFunction(lsf);
}

template <typename TInputImage, typename TOutputImage>
auto
SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::ComputeCurvatureFromSparseImageNeighborhood(
  SparseImageIteratorType & it) const -> ValueType
{
  unsigned int            counter;
  SizeValueType           position, stride[ImageDimension], indicator[ImageDimension];
  constexpr SizeValueType one = 1;
  const SizeValueType     center = it.Size() / 2;
  NormalVectorType        normalvector;
  ValueType               curvature;
  bool                    flag = false;

  const NeighborhoodScalesType neighborhoodScales = this->GetDifferenceFunction()->ComputeNeighborhoodScales();

  for (unsigned int j = 0; j < ImageDimension; ++j)
  {
    stride[j] = it.GetStride(j);
    indicator[j] = one << j;
  }

  curvature = ValueType{};

  for (counter = 0; counter < m_NumVertex; ++counter)
  {
    position = center;
    for (unsigned int k = 0; k < ImageDimension; ++k)
    {
      if (counter & indicator[k])
      {
        position -= stride[k];
      }
    }
    if (it.GetPixel(position) == nullptr)
    {
      flag = true;
    }
    else
    {
      normalvector = it.GetPixel(position)->m_Data;
      for (unsigned int j = 0; j < ImageDimension; ++j) // derivative axis
      {
        if (counter & indicator[j])
        {
          curvature -= normalvector[j] * neighborhoodScales[j];
        }
        else
        {
          curvature += normalvector[j] * neighborhoodScales[j];
        }
      } // end derivative axis
    }
  } // end counter

  if (flag)
  {
    curvature = ValueType{};
  }
  curvature *= m_DimConst;
  return curvature;
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::ComputeCurvatureTarget(
  const OutputImageType * distanceImage,
  SparseImageType *       sparseImage) const
{
  using DistanceImageIteratorType = ImageRegionConstIterator<OutputImageType>;

  DistanceImageIteratorType distanceImageIterator(distanceImage, distanceImage->GetRequestedRegion());
  typename SparseImageIteratorType::RadiusType radius;
  for (unsigned int j = 0; j < ImageDimension; ++j)
  {
    radius[j] = 1;
  }
  SparseImageIteratorType sparseImageIterator(radius, sparseImage, sparseImage->GetRequestedRegion());

  ValueType  distance;
  NodeType * node;

  sparseImageIterator.GoToBegin();
  distanceImageIterator.GoToBegin();
  while (!distanceImageIterator.IsAtEnd())
  {
    distance = distanceImageIterator.Value();
    node = sparseImageIterator.GetCenterPixel();
    if ((distance >= -m_CurvatureBandWidth) && (distance <= m_CurvatureBandWidth))
    {
      node->m_Curvature = ComputeCurvatureFromSparseImageNeighborhood(sparseImageIterator);
      node->m_CurvatureFlag = true;
    }
    else
    {
      if (node != nullptr)
      {
        node->m_CurvatureFlag = false;
      }
    }
    ++sparseImageIterator;
    ++distanceImageIterator;
  }
}

template <typename TInputImage, typename TOutputImage>
bool
SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::ActiveLayerCheckBand() const
{
  typename LayerType::Iterator      layerIt;
  typename SparseImageType::Pointer im = m_LevelSetFunction->GetSparseTargetImage();
  bool                              flag = false;
  NodeType *                        node;

  layerIt = this->m_Layers[0]->Begin();
  while (layerIt != this->m_Layers[0]->End())
  {
    node = im->GetPixel(layerIt->m_Value);
    if ((node == nullptr) || (node->m_CurvatureFlag == false))
    {
      // level set touching edge of normal band
      flag = true;
      break;
    }
    ++layerIt;
  }
  return flag;
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>::ProcessNormals()
{
  typename NormalVectorFilterType::Pointer   NormalVectorFilter;
  typename NormalVectorFunctionType::Pointer NormalVectorFunction;

  auto temp = static_cast<ValueType>(ImageDimension);

  NormalVectorFilter = NormalVectorFilterType::New();
  NormalVectorFunction = NormalVectorFunctionType::New();
  NormalVectorFunction->SetNormalProcessType(m_NormalProcessType);
  NormalVectorFunction->SetConductanceParameter(m_NormalProcessConductance);
  NormalVectorFilter->SetNormalFunction(NormalVectorFunction);
  NormalVectorFilter->SetIsoLevelLow(-m_CurvatureBandWidth - temp);
  NormalVectorFilter->SetIsoLevelHigh(m_CurvatureBandWidth + temp);
  NormalVectorFilter->SetMaxIteration(m_MaxNormalIteration);
  NormalVectorFilter->SetUnsharpMaskingFlag(m_NormalProcessUnsharpFlag);
  NormalVectorFilter->SetUnsharpMaskingWeight(m_NormalProcessUnsharpWeight);

  // Move the pixel container and image information of the image we are working
  // on into a temporary image to  use as the input to the mini-pipeline.  This
  // avoids a complete copy of the image.
  typename OutputImageType::Pointer phi = this->GetOutput();
  auto                              tmp = OutputImageType::New();
  tmp->SetRequestedRegion(phi->GetRequestedRegion());
  tmp->SetBufferedRegion(phi->GetBufferedRegion());
  tmp->SetLargestPossibleRegion(phi->GetLargestPossibleRegion());
  tmp->SetPixelContainer(phi->GetPixelContainer());
  tmp->CopyInformation(phi);

  NormalVectorFilter->SetInput(tmp);
  NormalVectorFilter->Update();

  typename SparseImageType::Pointer SparseNormalImage = NormalVectorFilter->GetOutput();

  this->ComputeCurvatureTarget(tmp, SparseNormalImage);
  m_LevelSetFunction->SetSparseTargetImage(SparseNormalImage);
}
} // end namespace itk

#endif