File: itkSparseFieldLevelSetImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (1174 lines) | stat: -rw-r--r-- 42,042 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSparseFieldLevelSetImageFilter_hxx
#define itkSparseFieldLevelSetImageFilter_hxx

#include "itkZeroCrossingImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkShiftScaleImageFilter.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkMath.h"
#include "itkPrintHelper.h"

namespace itk
{
template <typename TNeighborhoodType>
SparseFieldCityBlockNeighborList<TNeighborhoodType>::SparseFieldCityBlockNeighborList()
{
  using ImageType = typename NeighborhoodType::ImageType;
  auto dummy_image = ImageType::New();

  unsigned int i, nCenter;
  int          d;
  OffsetType   zero_offset;

  for (i = 0; i < Dimension; ++i)
  {
    m_Radius[i] = 1;
    zero_offset[i] = 0;
  }
  NeighborhoodType it(m_Radius, dummy_image, dummy_image->GetRequestedRegion());
  nCenter = it.Size() / 2;

  m_Size = 2 * Dimension;
  m_ArrayIndex.reserve(m_Size);
  m_NeighborhoodOffset.reserve(m_Size);

  for (i = 0; i < m_Size; ++i)
  {
    m_NeighborhoodOffset.push_back(zero_offset);
  }

  for (d = Dimension - 1, i = 0; d >= 0; --d, ++i)
  {
    m_ArrayIndex.push_back(nCenter - it.GetStride(d));
    m_NeighborhoodOffset[i][d] = -1;
  }
  for (d = 0; d < static_cast<int>(Dimension); ++d, ++i)
  {
    m_ArrayIndex.push_back(nCenter + it.GetStride(d));
    m_NeighborhoodOffset[i][d] = 1;
  }

  for (i = 0; i < Dimension; ++i)
  {
    m_StrideTable[i] = it.GetStride(i);
  }
}

template <typename TNeighborhoodType>
void
SparseFieldCityBlockNeighborList<TNeighborhoodType>::Print(std::ostream & os, Indent indent) const
{
  using namespace print_helper;

  os << "SparseFieldCityBlockNeighborList: " << std::endl;

  os << indent << "Size: " << m_Size << std::endl;
  os << indent << "Radius: " << static_cast<typename NumericTraits<RadiusType>::PrintType>(m_Radius) << std::endl;
  os << indent << "ArrayIndex: " << m_ArrayIndex << std::endl;
  os << indent << "NeighborhoodOffset: " << m_NeighborhoodOffset << std::endl;
  os << indent << "StrideTable: " << m_StrideTable << std::endl;
}

// template<typename TInputImage, typename TOutputImage>
// double SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>
//::m_ConstantGradientValue = 1.0;

template <typename TInputImage, typename TOutputImage>
typename SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::ValueType
  SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::m_ValueOne = 1;

template <typename TInputImage, typename TOutputImage>
typename SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::ValueType
  SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::m_ValueZero = 0;

template <typename TInputImage, typename TOutputImage>
typename SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::StatusType
  SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::m_StatusNull =
    NumericTraits<typename SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::StatusType>::NonpositiveMin();

template <typename TInputImage, typename TOutputImage>
typename SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::StatusType
  SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::m_StatusChanging = -1;

template <typename TInputImage, typename TOutputImage>
typename SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::StatusType
  SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::m_StatusActiveChangingUp = -2;

template <typename TInputImage, typename TOutputImage>
typename SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::StatusType
  SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::m_StatusActiveChangingDown = -3;

template <typename TInputImage, typename TOutputImage>
typename SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::StatusType
  SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::m_StatusBoundaryPixel = -4;

template <typename TInputImage, typename TOutputImage>
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::SparseFieldLevelSetImageFilter()
  : m_IsoSurfaceValue(m_ValueZero)
  , m_InputImage(nullptr)
  , m_OutputImage(nullptr)

{
  m_LayerNodeStore = LayerNodeStorageType::New();
  m_LayerNodeStore->SetGrowthStrategyToExponential();
  this->SetRMSChange(static_cast<double>(m_ValueZero));
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::ApplyUpdate(const TimeStepType & dt)
{
  unsigned int i, j, k, t;

  StatusType up_to, up_search;
  StatusType down_to, down_search;

  LayerPointerType UpList[2];
  LayerPointerType DownList[2];

  for (i = 0; i < 2; ++i)
  {
    UpList[i] = LayerType::New();
    DownList[i] = LayerType::New();
  }

  // Process the active layer.  This step will update the values in the active
  // layer as well as the values at indices that *will* become part of the
  // active layer when they are promoted/demoted.  Also records promotions,
  // demotions in the m_StatusLayer for current active layer indices
  // (i.e. those indices which will move inside or outside the active
  // layers).
  this->UpdateActiveLayerValues(dt, UpList[0], DownList[0]);

  // Process the status up/down lists.  This is an iterative process which
  // proceeds outwards from the active layer.  Each iteration generates the
  // list for the next iteration.

  // First process the status lists generated on the active layer.
  this->ProcessStatusList(UpList[0], UpList[1], 2, 1);
  this->ProcessStatusList(DownList[0], DownList[1], 1, 2);

  down_to = up_to = 0;
  up_search = 3;
  down_search = 4;
  j = 1;
  k = 0;
  while (down_search < static_cast<StatusType>(m_Layers.size()))
  {
    this->ProcessStatusList(UpList[j], UpList[k], up_to, up_search);
    this->ProcessStatusList(DownList[j], DownList[k], down_to, down_search);

    if (up_to == 0)
    {
      up_to += 1;
    }
    else
    {
      up_to += 2;
    }
    down_to += 2;

    up_search += 2;
    down_search += 2;

    // Swap the lists so we can re-use the empty one.
    t = j;
    j = k;
    k = t;
  }

  // Process the outermost inside/outside layers in the sparse field.
  this->ProcessStatusList(UpList[j], UpList[k], up_to, m_StatusNull);
  this->ProcessStatusList(DownList[j], DownList[k], down_to, m_StatusNull);

  // Now we are left with the lists of indices which must be
  // brought into the outermost layers.  Bring UpList into last inside layer
  // and DownList into last outside layer.
  this->ProcessOutsideList(UpList[k], static_cast<int>(m_Layers.size()) - 2);
  this->ProcessOutsideList(DownList[k], static_cast<int>(m_Layers.size()) - 1);

  // Finally, we update all of the layer values (excluding the active layer,
  // which has already been updated).
  this->PropagateAllLayerValues();
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::ProcessOutsideList(LayerType * OutsideList,
                                                                              StatusType  ChangeToStatus)
{
  LayerNodeType * node;

  // Push each index in the input list into its appropriate status layer
  // (ChangeToStatus) and update the status image value at that index.
  while (!OutsideList->Empty())
  {
    m_StatusImage->SetPixel(OutsideList->Front()->m_Value, ChangeToStatus);
    node = OutsideList->Front();
    OutsideList->PopFront();
    m_Layers[ChangeToStatus]->PushFront(node);
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::ProcessStatusList(LayerType * InputList,
                                                                             LayerType * OutputList,
                                                                             StatusType  ChangeToStatus,
                                                                             StatusType  SearchForStatus)
{
  unsigned int    i;
  bool            bounds_status;
  LayerNodeType * node;
  StatusType      neighbor_status;

  NeighborhoodIterator<StatusImageType> statusIt(
    m_NeighborList.GetRadius(), m_StatusImage, this->GetOutput()->GetRequestedRegion());

  if (m_BoundsCheckingActive == false)
  {
    statusIt.NeedToUseBoundaryConditionOff();
  }

  // Push each index in the input list into its appropriate status layer
  // (ChangeToStatus) and update the status image value at that index.
  // Also examine the neighbors of the index to determine which need to go onto
  // the output list (search for SearchForStatus).
  while (!InputList->Empty())
  {
    statusIt.SetLocation(InputList->Front()->m_Value);
    statusIt.SetCenterPixel(ChangeToStatus);

    node = InputList->Front(); // Must unlink from the input list
    InputList->PopFront();     // _before_ transferring to another list.
    m_Layers[ChangeToStatus]->PushFront(node);

    for (i = 0; i < m_NeighborList.GetSize(); ++i)
    {
      neighbor_status = statusIt.GetPixel(m_NeighborList.GetArrayIndex(i));

      // Have we bumped up against the boundary?  If so, turn on bounds
      // checking.
      if (neighbor_status == m_StatusBoundaryPixel)
      {
        m_BoundsCheckingActive = true;
      }

      if (neighbor_status == SearchForStatus)
      { // mark this pixel so we don't add it twice.
        statusIt.SetPixel(m_NeighborList.GetArrayIndex(i), m_StatusChanging, bounds_status);
        if (bounds_status)
        {
          node = m_LayerNodeStore->Borrow();
          node->m_Value = statusIt.GetIndex() + m_NeighborList.GetNeighborhoodOffset(i);
          OutputList->PushFront(node);
        } // else this index was out of bounds.
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::UpdateActiveLayerValues(TimeStepType dt,
                                                                                   LayerType *  UpList,
                                                                                   LayerType *  DownList)
{
  // This method scales the update buffer values by the time step and adds
  // them to the active layer pixels.  New values at an index which fall
  // outside of the active layer range trigger that index to be placed on the
  // "up" or "down" status list.  The neighbors of any such index are then
  // assigned new values if they are determined to be part of the active list
  // for the next iteration (i.e. their values will be raised or lowered into
  // the active range).
  const ValueType LOWER_ACTIVE_THRESHOLD = -(m_ConstantGradientValue / 2.0);
  const ValueType UPPER_ACTIVE_THRESHOLD = m_ConstantGradientValue / 2.0;
  //   const ValueType LOWER_ACTIVE_THRESHOLD = - 0.7;
  //   const ValueType UPPER_ACTIVE_THRESHOLD =   0.7;
  ValueType      new_value, temp_value, rms_change_accumulator;
  LayerNodeType *node, *release_node;
  StatusType     neighbor_status;
  unsigned int   i, idx, counter;
  bool           bounds_status, flag;

  typename LayerType::Iterator              layerIt;
  typename UpdateBufferType::const_iterator updateIt;

  NeighborhoodIterator<OutputImageType> outputIt(
    m_NeighborList.GetRadius(), this->GetOutput(), this->GetOutput()->GetRequestedRegion());

  NeighborhoodIterator<StatusImageType> statusIt(
    m_NeighborList.GetRadius(), m_StatusImage, this->GetOutput()->GetRequestedRegion());

  if (m_BoundsCheckingActive == false)
  {
    outputIt.NeedToUseBoundaryConditionOff();
    statusIt.NeedToUseBoundaryConditionOff();
  }

  counter = 0;
  rms_change_accumulator = m_ValueZero;
  layerIt = m_Layers[0]->Begin();
  updateIt = m_UpdateBuffer.begin();
  while (layerIt != m_Layers[0]->End())
  {
    outputIt.SetLocation(layerIt->m_Value);
    statusIt.SetLocation(layerIt->m_Value);

    new_value = this->CalculateUpdateValue(layerIt->m_Value, dt, outputIt.GetCenterPixel(), *updateIt);

    // If this index needs to be moved to another layer, then search its
    // neighborhood for indices that need to be pulled up/down into the
    // active layer. Set those new active layer values appropriately,
    // checking first to make sure they have not been set by a more
    // influential neighbor.

    //   ...But first make sure any neighbors in the active layer are not
    // moving to a layer in the opposite direction.  This step is necessary
    // to avoid the creation of holes in the active layer.  The fix is simply
    // to not change this value and leave the index in the active set.

    if (new_value >= UPPER_ACTIVE_THRESHOLD)
    { // This index will move UP into a positive (outside) layer.
      // First check for active layer neighbors moving in the opposite
      // direction.
      flag = false;
      for (i = 0; i < m_NeighborList.GetSize(); ++i)
      {
        if (statusIt.GetPixel(m_NeighborList.GetArrayIndex(i)) == m_StatusActiveChangingDown)
        {
          flag = true;
          break;
        }
      }
      if (flag)
      {
        ++layerIt;
        ++updateIt;
        continue;
      }

      rms_change_accumulator += itk::Math::sqr(new_value - outputIt.GetCenterPixel());

      // Search the neighborhood for inside indices.
      temp_value = new_value - m_ConstantGradientValue;
      for (i = 0; i < m_NeighborList.GetSize(); ++i)
      {
        idx = m_NeighborList.GetArrayIndex(i);
        neighbor_status = statusIt.GetPixel(idx);
        if (neighbor_status == 1)
        {
          // Keep the smallest possible value for the new active node.  This
          // places the new active layer node closest to the zero level-set.
          if (outputIt.GetPixel(idx) < LOWER_ACTIVE_THRESHOLD ||
              itk::Math::abs(temp_value) < itk::Math::abs(outputIt.GetPixel(idx)))
          {
            outputIt.SetPixel(idx, temp_value, bounds_status);
          }
        }
      }
      node = m_LayerNodeStore->Borrow();
      node->m_Value = layerIt->m_Value;
      UpList->PushFront(node);
      statusIt.SetCenterPixel(m_StatusActiveChangingUp);

      // Now remove this index from the active list.
      release_node = layerIt.GetPointer();
      ++layerIt;
      m_Layers[0]->Unlink(release_node);
      m_LayerNodeStore->Return(release_node);
    }

    else if (new_value < LOWER_ACTIVE_THRESHOLD)
    { // This index will move DOWN into a negative (inside) layer.
      // First check for active layer neighbors moving in the opposite
      // direction.
      flag = false;
      for (i = 0; i < m_NeighborList.GetSize(); ++i)
      {
        if (statusIt.GetPixel(m_NeighborList.GetArrayIndex(i)) == m_StatusActiveChangingUp)
        {
          flag = true;
          break;
        }
      }
      if (flag)
      {
        ++layerIt;
        ++updateIt;
        continue;
      }

      rms_change_accumulator += itk::Math::sqr(new_value - outputIt.GetCenterPixel());

      // Search the neighborhood for outside indices.
      temp_value = new_value + m_ConstantGradientValue;
      for (i = 0; i < m_NeighborList.GetSize(); ++i)
      {
        idx = m_NeighborList.GetArrayIndex(i);
        neighbor_status = statusIt.GetPixel(idx);
        if (neighbor_status == 2)
        {
          // Keep the smallest magnitude value for this active set node.  This
          // places the node closest to the active layer.
          if (outputIt.GetPixel(idx) >= UPPER_ACTIVE_THRESHOLD ||
              itk::Math::abs(temp_value) < itk::Math::abs(outputIt.GetPixel(idx)))
          {
            outputIt.SetPixel(idx, temp_value, bounds_status);
          }
        }
      }
      node = m_LayerNodeStore->Borrow();
      node->m_Value = layerIt->m_Value;
      DownList->PushFront(node);
      statusIt.SetCenterPixel(m_StatusActiveChangingDown);

      // Now remove this index from the active list.
      release_node = layerIt.GetPointer();
      ++layerIt;
      m_Layers[0]->Unlink(release_node);
      m_LayerNodeStore->Return(release_node);
    }
    else
    {
      rms_change_accumulator += itk::Math::sqr(new_value - outputIt.GetCenterPixel());
      // rms_change_accumulator += (*updateIt) * (*updateIt);
      outputIt.SetCenterPixel(new_value);
      ++layerIt;
    }
    ++updateIt;
    ++counter;
  }

  // Determine the average change during this iteration.
  if (counter == 0)
  {
    this->SetRMSChange(static_cast<double>(m_ValueZero));
  }
  else
  {
    this->SetRMSChange(
      static_cast<double>(std::sqrt(static_cast<double>(rms_change_accumulator / static_cast<ValueType>(counter)))));
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::CopyInputToOutput()
{
  // This method is the first step in initializing the level-set image, which
  // is also the output of the filter.  The input is passed through a
  // zero crossing filter, which produces zero's at pixels closest to the zero
  // level set and one's elsewhere.  The actual zero level set values will be
  // adjusted in the Initialize() step to more accurately represent the
  // position of the zero level set.

  // First need to subtract the iso-surface value from the input image.
  using ShiftScaleFilterType = ShiftScaleImageFilter<InputImageType, OutputImageType>;
  auto shiftScaleFilter = ShiftScaleFilterType::New();
  shiftScaleFilter->SetInput(this->GetInput());
  shiftScaleFilter->SetShift(-m_IsoSurfaceValue);
  // keep a handle to the shifted output
  m_ShiftedImage = shiftScaleFilter->GetOutput();

  typename ZeroCrossingImageFilter<OutputImageType, OutputImageType>::Pointer zeroCrossingFilter =
    ZeroCrossingImageFilter<OutputImageType, OutputImageType>::New();
  zeroCrossingFilter->SetInput(m_ShiftedImage);
  zeroCrossingFilter->GraftOutput(this->GetOutput());
  zeroCrossingFilter->SetBackgroundValue(m_ValueOne);
  zeroCrossingFilter->SetForegroundValue(m_ValueZero);

  zeroCrossingFilter->Update();

  this->GraftOutput(zeroCrossingFilter->GetOutput());
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::Initialize()
{
  this->m_InputImage = this->GetInput();
  this->m_OutputImage = this->GetOutput();

  if (this->GetUseImageSpacing())
  {
    const auto & spacing = this->GetInput()->GetSpacing();

    SpacePrecisionType minSpacing = NumericTraits<SpacePrecisionType>::max();
    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      minSpacing = std::min(minSpacing, spacing[i]);
    }
    m_ConstantGradientValue = minSpacing;
  }
  else
  {
    m_ConstantGradientValue = 1.0;
  }

  // Allocate the status image.
  m_StatusImage = StatusImageType::New();
  m_StatusImage->SetRegions(this->GetOutput()->GetRequestedRegion());
  m_StatusImage->Allocate();

  // Initialize the status image to contain all m_StatusNull values.
  ImageRegionIterator<StatusImageType> statusIt(m_StatusImage, m_StatusImage->GetRequestedRegion());
  for (statusIt.GoToBegin(); !statusIt.IsAtEnd(); ++statusIt)
  {
    statusIt.Set(m_StatusNull);
  }

  // Initialize the boundary pixels in the status image to
  // m_StatusBoundaryPixel values.  Uses the face calculator to find all of the
  // region faces.
  using BFCType = NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<StatusImageType>;

  BFCType                                  faceCalculator;
  typename BFCType::SizeType               sz;
  typename BFCType::FaceListType::iterator fit;

  sz.Fill(1);
  typename BFCType::FaceListType faceList = faceCalculator(m_StatusImage, m_StatusImage->GetRequestedRegion(), sz);
  fit = faceList.begin();

  for (++fit; fit != faceList.end(); ++fit) // skip the first (nonboundary)
                                            // region
  {
    statusIt = ImageRegionIterator<StatusImageType>(m_StatusImage, *fit);
    for (statusIt.GoToBegin(); !statusIt.IsAtEnd(); ++statusIt)
    {
      statusIt.Set(m_StatusBoundaryPixel);
    }
  }

  // Erase all existing layer lists.
  for (unsigned int i = 0; i < m_Layers.size(); ++i)
  {
    while (!m_Layers[i]->Empty())
    {
      m_LayerNodeStore->Return(m_Layers[i]->Front());
      m_Layers[i]->PopFront();
    }
  }

  // Allocate the layers for the sparse field.
  m_Layers.clear();
  m_Layers.reserve(2 * m_NumberOfLayers + 1);

  while (m_Layers.size() < (2 * m_NumberOfLayers + 1))
  {
    m_Layers.push_back(LayerType::New());
  }

  // Throw an exception if we don't have enough layers.
  if (m_Layers.size() < 3)
  {
    itkExceptionMacro("Not enough layers have been allocated for the sparse field.  Requires at least one layer.");
  }

  // Construct the active layer and initialize the first layers inside and
  // outside of the active layer.
  this->ConstructActiveLayer();

  // Construct the rest of the non-active set layers using the first two
  // layers. Inside layers are odd numbers, outside layers are even numbers.
  for (unsigned int i = 1; i < m_Layers.size() - 2; ++i)
  {
    this->ConstructLayer(i, i + 2);
  }

  // Set the values in the output image for the active layer.
  this->InitializeActiveLayerValues();

  // Initialize layer values using the active layer as seeds.
  this->PropagateAllLayerValues();

  // Initialize pixels inside and outside the sparse field layers to positive
  // and negative values, respectively.  This is not necessary for the
  // calculations, but is useful for presenting a more intuitive output to the
  // filter.  See PostProcessOutput method for more information.
  this->InitializeBackgroundPixels();
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::InitializeBackgroundPixels()
{
  // Assign background pixels OUTSIDE the sparse field layers to a new level set
  // with value greater than the outermost layer.  Assign background pixels
  // INSIDE the sparse field layers to a new level set with value less than
  // the innermost layer.
  const auto max_layer = static_cast<ValueType>(m_NumberOfLayers);

  const ValueType outside_value = (max_layer + 1) * m_ConstantGradientValue;
  const ValueType inside_value = -(max_layer + 1) * m_ConstantGradientValue;

  ImageRegionConstIterator<StatusImageType> statusIt(m_StatusImage, this->GetOutput()->GetRequestedRegion());

  ImageRegionIterator<OutputImageType> outputIt(this->GetOutput(), this->GetOutput()->GetRequestedRegion());

  ImageRegionConstIterator<OutputImageType> shiftedIt(m_ShiftedImage, this->GetOutput()->GetRequestedRegion());

  for (outputIt.GoToBegin(), statusIt.GoToBegin(); !outputIt.IsAtEnd(); ++outputIt, ++statusIt, ++shiftedIt)
  {
    if (statusIt.Get() == m_StatusNull || statusIt.Get() == m_StatusBoundaryPixel)
    {
      if (shiftedIt.Get() > m_ValueZero)
      {
        outputIt.Set(outside_value);
      }
      else
      {
        outputIt.Set(inside_value);
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::ConstructActiveLayer()
{
  //
  // We find the active layer by searching for 0's in the zero crossing image
  // (output image).  The first inside and outside layers are also constructed
  // by searching the neighbors of the active layer in the (shifted) input
  // image.
  // Negative neighbors not in the active set are assigned to the inside,
  // positive neighbors are assigned to the outside.
  //
  // During construction we also check whether any of the layers of the active
  // set (or the active set itself) is sitting on a boundary pixel location. If
  // this is the case, then we need to do active bounds checking in the solver.
  //
  NeighborhoodIterator<OutputImageType> shiftedIt(
    m_NeighborList.GetRadius(), m_ShiftedImage, this->m_OutputImage->GetRequestedRegion());
  NeighborhoodIterator<StatusImageType> statusIt(
    m_NeighborList.GetRadius(), m_StatusImage, this->m_OutputImage->GetRequestedRegion());
  IndexType       center_index, offset_index;
  LayerNodeType * node;
  bool            bounds_status;
  ValueType       value;
  StatusType      layer_number;

  typename OutputImageType::IndexType upperBounds, lowerBounds;
  lowerBounds = this->m_OutputImage->GetRequestedRegion().GetIndex();
  upperBounds =
    this->m_OutputImage->GetRequestedRegion().GetIndex() + this->m_OutputImage->GetRequestedRegion().GetSize();

  for (NeighborhoodIterator<OutputImageType> outputIt(
         m_NeighborList.GetRadius(), this->m_OutputImage, this->m_OutputImage->GetRequestedRegion());
       !outputIt.IsAtEnd();
       ++outputIt)
  {
    if (Math::ExactlyEquals(outputIt.GetCenterPixel(), m_ValueZero))
    {
      // Grab the neighborhood in the status image.
      center_index = outputIt.GetIndex();
      statusIt.SetLocation(center_index);

      // Check to see if any of the sparse field touches a boundary.  If so,
      // then activate bounds checking.
      for (unsigned int i = 0; i < ImageDimension; ++i)
      {
        if (center_index[i] + static_cast<OffsetValueType>(m_NumberOfLayers) >= (upperBounds[i] - 1) ||
            center_index[i] - static_cast<OffsetValueType>(m_NumberOfLayers) <= lowerBounds[i])
        {
          m_BoundsCheckingActive = true;
        }
      }

      // Borrow a node from the store and set its value.
      node = m_LayerNodeStore->Borrow();
      node->m_Value = center_index;

      // Add the node to the active list and set the status in the status
      // image.
      m_Layers[0]->PushFront(node);
      statusIt.SetCenterPixel(0);

      // Grab the neighborhood in the image of shifted input values.
      shiftedIt.SetLocation(center_index);

      // Search the neighborhood pixels for first inside & outside layer
      // members.  Construct these lists and set status list values.
      for (unsigned int i = 0; i < m_NeighborList.GetSize(); ++i)
      {
        offset_index = center_index + m_NeighborList.GetNeighborhoodOffset(i);

        if (Math::NotExactlyEquals(outputIt.GetPixel(m_NeighborList.GetArrayIndex(i)), m_ValueZero))
        {
          value = shiftedIt.GetPixel(m_NeighborList.GetArrayIndex(i));

          if (value < m_ValueZero) // Assign to first inside layer.
          {
            layer_number = 1;
          }
          else // Assign to first outside layer
          {
            layer_number = 2;
          }

          statusIt.SetPixel(m_NeighborList.GetArrayIndex(i), layer_number, bounds_status);
          if (bounds_status) // In bounds.
          {
            node = m_LayerNodeStore->Borrow();
            node->m_Value = offset_index;
            m_Layers[layer_number]->PushFront(node);
          } // else do nothing.
        }
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::ConstructLayer(StatusType from, StatusType to)
{
  unsigned int    i;
  LayerNodeType * node;
  bool            boundary_status;

  typename LayerType::ConstIterator     fromIt;
  NeighborhoodIterator<StatusImageType> statusIt(
    m_NeighborList.GetRadius(), m_StatusImage, this->m_OutputImage->GetRequestedRegion());

  // For all indices in the "from" layer...
  for (fromIt = m_Layers[from]->Begin(); fromIt != m_Layers[from]->End(); ++fromIt)
  {
    // Search the neighborhood of this index in the status image for
    // unassigned indices. Push those indices onto the "to" layer and
    // assign them values in the status image.  Status pixels outside the
    // boundary will be ignored.
    statusIt.SetLocation(fromIt->m_Value);
    for (i = 0; i < m_NeighborList.GetSize(); ++i)
    {
      if (statusIt.GetPixel(m_NeighborList.GetArrayIndex(i)) == m_StatusNull)
      {
        statusIt.SetPixel(m_NeighborList.GetArrayIndex(i), to, boundary_status);
        if (boundary_status) // in bounds
        {
          node = m_LayerNodeStore->Borrow();
          node->m_Value = statusIt.GetIndex() + m_NeighborList.GetNeighborhoodOffset(i);
          m_Layers[to]->PushFront(node);
        }
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::InitializeActiveLayerValues()
{
  const ValueType CHANGE_FACTOR = m_ConstantGradientValue / 2.0;
  ValueType       MIN_NORM = 1.0e-6;

  if (this->GetUseImageSpacing())
  {
    const auto & spacing = this->GetInput()->GetSpacing();

    SpacePrecisionType minSpacing = NumericTraits<SpacePrecisionType>::max();
    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      minSpacing = std::min(minSpacing, spacing[i]);
    }
    MIN_NORM *= minSpacing;
  }

  unsigned int i, center;

  typename LayerType::ConstIterator          activeIt;
  ConstNeighborhoodIterator<OutputImageType> shiftedIt(
    m_NeighborList.GetRadius(), m_ShiftedImage, this->m_OutputImage->GetRequestedRegion());

  center = shiftedIt.Size() / 2;
  typename OutputImageType::Pointer output = this->m_OutputImage;

  const NeighborhoodScalesType neighborhoodScales = this->GetDifferenceFunction()->ComputeNeighborhoodScales();

  ValueType dx_forward, dx_backward, length, distance;

  // For all indices in the active layer...
  for (activeIt = m_Layers[0]->Begin(); activeIt != m_Layers[0]->End(); ++activeIt)
  {
    // Interpolate on the (shifted) input image values at this index to
    // assign an active layer value in the output image.
    shiftedIt.SetLocation(activeIt->m_Value);

    length = m_ValueZero;
    for (i = 0; i < ImageDimension; ++i)
    {
      dx_forward =
        (shiftedIt.GetPixel(center + m_NeighborList.GetStride(i)) - shiftedIt.GetCenterPixel()) * neighborhoodScales[i];
      dx_backward =
        (shiftedIt.GetCenterPixel() - shiftedIt.GetPixel(center - m_NeighborList.GetStride(i))) * neighborhoodScales[i];

      if (itk::Math::abs(dx_forward) > itk::Math::abs(dx_backward))
      {
        length += dx_forward * dx_forward;
      }
      else
      {
        length += dx_backward * dx_backward;
      }
    }
    length = std::sqrt(static_cast<double>(length)) + MIN_NORM;
    distance = shiftedIt.GetCenterPixel() / length;

    output->SetPixel(activeIt->m_Value, std::clamp(distance, -CHANGE_FACTOR, CHANGE_FACTOR));
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::AllocateUpdateBuffer()
{
  // Preallocate the update buffer.  NOTE: There is currently no way to
  // downsize a std::vector. This means that the update buffer will grow
  // dynamically but not shrink.  In newer implementations there may be a
  // squeeze method which can do this.  Alternately, we can implement our own
  // strategy for downsizing.
  m_UpdateBuffer.clear();
  m_UpdateBuffer.reserve(m_Layers[0]->Size());
}

template <typename TInputImage, typename TOutputImage>
auto
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::CalculateChange() -> TimeStepType
{
  const typename Superclass::FiniteDifferenceFunctionType::Pointer   df = this->GetDifferenceFunction();
  typename Superclass::FiniteDifferenceFunctionType::FloatOffsetType offset;
  ValueType    norm_grad_phi_squared, dx_forward, dx_backward, forwardValue, backwardValue, centerValue;
  unsigned int i;
  ValueType    MIN_NORM = 1.0e-6;
  if (this->GetUseImageSpacing())
  {
    const auto & spacing = this->GetInput()->GetSpacing();

    SpacePrecisionType minSpacing = NumericTraits<SpacePrecisionType>::max();
    for (i = 0; i < ImageDimension; ++i)
    {
      minSpacing = std::min(minSpacing, spacing[i]);
    }
    MIN_NORM *= minSpacing;
  }

  void * globalData = df->GetGlobalDataPointer();

  typename LayerType::ConstIterator     layerIt;
  NeighborhoodIterator<OutputImageType> outputIt(
    df->GetRadius(), this->m_OutputImage, this->m_OutputImage->GetRequestedRegion());
  TimeStepType timeStep;

  if (m_BoundsCheckingActive == false)
  {
    outputIt.NeedToUseBoundaryConditionOff();
  }

  m_UpdateBuffer.clear();
  m_UpdateBuffer.reserve(m_Layers[0]->Size());

  // Calculates the update values for the active layer indices in this
  // iteration.  Iterates through the active layer index list, applying
  // the level set function to the output image (level set image) at each
  // index.  Update values are stored in the update buffer.
  for (layerIt = m_Layers[0]->Begin(); layerIt != m_Layers[0]->End(); ++layerIt)
  {
    outputIt.SetLocation(layerIt->m_Value);

    // Calculate the offset to the surface from the center of this
    // neighborhood.  This is used by some level set functions in sampling a
    // speed, advection, or curvature term.
    if (this->GetInterpolateSurfaceLocation() && (centerValue = outputIt.GetCenterPixel()) != 0.0)
    {
      // Surface is at the zero crossing, so distance to surface is:
      // phi(x) / norm(grad(phi)), where phi(x) is the center of the
      // neighborhood.  The location is therefore
      // (i,j,k) - ( phi(x) * grad(phi(x)) ) / norm(grad(phi))^2
      norm_grad_phi_squared = 0.0;
      for (i = 0; i < ImageDimension; ++i)
      {
        forwardValue = outputIt.GetNext(i);
        backwardValue = outputIt.GetPrevious(i);

        if (forwardValue * backwardValue >= 0)
        { //  Neighbors are same sign OR at least one neighbor is zero.
          dx_forward = forwardValue - centerValue;
          dx_backward = centerValue - backwardValue;

          // Pick the larger magnitude derivative.
          if (itk::Math::abs(dx_forward) > itk::Math::abs(dx_backward))
          {
            offset[i] = dx_forward;
          }
          else
          {
            offset[i] = dx_backward;
          }
        }
        else // Neighbors are opposite sign, pick the direction of the 0 surface.
        {
          if (forwardValue * centerValue < 0)
          {
            offset[i] = forwardValue - centerValue;
          }
          else
          {
            offset[i] = centerValue - backwardValue;
          }
        }

        norm_grad_phi_squared += offset[i] * offset[i];
      }

      for (i = 0; i < ImageDimension; ++i)
      {
        offset[i] = (offset[i] * centerValue) / (norm_grad_phi_squared + MIN_NORM);
      }

      m_UpdateBuffer.push_back(df->ComputeUpdate(outputIt, globalData, offset));
    }
    else // Don't do interpolation
    {
      m_UpdateBuffer.push_back(df->ComputeUpdate(outputIt, globalData));
    }
  }

  // Ask the finite difference function to compute the time step for
  // this iteration.  We give it the global data pointer to use, then
  // ask it to free the global data memory.
  timeStep = df->ComputeGlobalTimeStep(globalData);

  df->ReleaseGlobalDataPointer(globalData);

  return timeStep;
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::PropagateAllLayerValues()
{
  unsigned int i;

  // Update values in the first inside and first outside layers using the
  // active layer as a seed. Inside layers are odd numbers, outside layers are
  // even numbers.
  this->PropagateLayerValues(0, 1, 3, 1); // first inside
  this->PropagateLayerValues(0, 2, 4, 2); // first outside

  // Update the rest of the layers.
  for (i = 1; i < m_Layers.size() - 2; ++i)
  {
    this->PropagateLayerValues(i, i + 2, i + 4, (i + 2) % 2);
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::PropagateLayerValues(StatusType from,
                                                                                StatusType to,
                                                                                StatusType promote,
                                                                                int        InOrOut)
{
  unsigned int i;
  ValueType    value, value_temp, delta;

  value = ValueType{}; // warnings
  bool                         found_neighbor_flag;
  typename LayerType::Iterator toIt;
  LayerNodeType *              node;
  StatusType                   past_end = static_cast<StatusType>(m_Layers.size()) - 1;

  // Are we propagating values inward (more negative) or outward (more
  // positive)?
  if (InOrOut == 1)
  {
    delta = -m_ConstantGradientValue;
  }
  else
  {
    delta = m_ConstantGradientValue;
  }

  NeighborhoodIterator<OutputImageType> outputIt(
    m_NeighborList.GetRadius(), this->m_OutputImage, this->m_OutputImage->GetRequestedRegion());
  NeighborhoodIterator<StatusImageType> statusIt(
    m_NeighborList.GetRadius(), m_StatusImage, this->m_OutputImage->GetRequestedRegion());

  if (m_BoundsCheckingActive == false)
  {
    outputIt.NeedToUseBoundaryConditionOff();
    statusIt.NeedToUseBoundaryConditionOff();
  }

  toIt = m_Layers[to]->Begin();
  while (toIt != m_Layers[to]->End())
  {
    statusIt.SetLocation(toIt->m_Value);

    // Is this index marked for deletion? If the status image has
    // been marked with another layer's value, we need to delete this node
    // from the current list then skip to the next iteration.
    if (statusIt.GetCenterPixel() != to)
    {
      node = toIt.GetPointer();
      ++toIt;
      m_Layers[to]->Unlink(node);
      m_LayerNodeStore->Return(node);
      continue;
    }

    outputIt.SetLocation(toIt->m_Value);

    found_neighbor_flag = false;
    for (i = 0; i < m_NeighborList.GetSize(); ++i)
    {
      // If this neighbor is in the "from" list, compare its absolute value
      // to to any previous values found in the "from" list.  Keep the value
      // that will cause the next layer to be closest to the zero level set.
      if (statusIt.GetPixel(m_NeighborList.GetArrayIndex(i)) == from)
      {
        value_temp = outputIt.GetPixel(m_NeighborList.GetArrayIndex(i));

        if (found_neighbor_flag == false)
        {
          value = value_temp;
        }
        else
        {
          if (InOrOut == 1)
          {
            // Find the largest (least negative) neighbor
            if (value_temp > value)
            {
              value = value_temp;
            }
          }
          else
          {
            // Find the smallest (least positive) neighbor
            if (value_temp < value)
            {
              value = value_temp;
            }
          }
        }
        found_neighbor_flag = true;
      }
    }
    if (found_neighbor_flag)
    {
      // Set the new value using the smallest distance
      // found in our "from" neighbors.
      outputIt.SetCenterPixel(value + delta);
      ++toIt;
    }
    else
    {
      // Did not find any neighbors on the "from" list, then promote this
      // node.  A "promote" value past the end of my sparse field size
      // means delete the node instead.  Change the status value in the
      // status image accordingly.
      node = toIt.GetPointer();
      ++toIt;
      m_Layers[to]->Unlink(node);
      if (promote > past_end)
      {
        m_LayerNodeStore->Return(node);
        statusIt.SetCenterPixel(m_StatusNull);
      }
      else
      {
        m_Layers[promote]->PushFront(node);
        statusIt.SetCenterPixel(promote);
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::PostProcessOutput()
{
  // Assign background pixels INSIDE the sparse field layers to a new level set
  // with value less than the innermost layer.  Assign background pixels
  // OUTSIDE the sparse field layers to a new level set with value greater than
  // the outermost layer.
  const auto max_layer = static_cast<ValueType>(m_NumberOfLayers);

  const ValueType inside_value = (max_layer + 1) * m_ConstantGradientValue;
  const ValueType outside_value = -(max_layer + 1) * m_ConstantGradientValue;

  ImageRegionConstIterator<StatusImageType> statusIt(m_StatusImage, this->m_OutputImage->GetRequestedRegion());

  ImageRegionIterator<OutputImageType> outputIt(this->m_OutputImage, this->m_OutputImage->GetRequestedRegion());

  for (outputIt.GoToBegin(), statusIt.GoToBegin(); !outputIt.IsAtEnd(); ++outputIt, ++statusIt)
  {
    if (statusIt.Get() == m_StatusNull)
    {
      if (outputIt.Get() > m_ValueZero)
      {
        outputIt.Set(inside_value);
      }
      else
      {
        outputIt.Set(outside_value);
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
SparseFieldLevelSetImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  using namespace print_helper;

  Superclass::PrintSelf(os, indent);

  m_NeighborList.Print(os, indent);

  os << indent << "ConstantGradientValue: " << m_ConstantGradientValue << std::endl;

  itkPrintSelfObjectMacro(ShiftedImage);

  os << indent << "Layers: " << m_Layers << std::endl;
  os << indent << "NumberOfLayers: " << m_NumberOfLayers << std::endl;

  itkPrintSelfObjectMacro(StatusImage);
  itkPrintSelfObjectMacro(LayerNodeStore);

  os << indent << "IsoSurfaceValue: " << static_cast<typename NumericTraits<ValueType>::PrintType>(m_IsoSurfaceValue)
     << std::endl;
  os << indent << "UpdateBuffer: " << static_cast<typename NumericTraits<UpdateBufferType>::PrintType>(m_UpdateBuffer)
     << std::endl;
  os << indent << "InterpolateSurfaceLocation: " << (m_InterpolateSurfaceLocation ? "On" : "Off") << std::endl;

  itkPrintSelfObjectMacro(InputImage);
  itkPrintSelfObjectMacro(OutputImage);

  os << indent << "BoundsCheckingActive: " << (m_BoundsCheckingActive ? "On" : "Off") << std::endl;
}
} // end namespace itk

#endif