File: itkThresholdSegmentationLevelSetFunction.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (220 lines) | stat: -rw-r--r-- 7,114 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkThresholdSegmentationLevelSetFunction_h
#define itkThresholdSegmentationLevelSetFunction_h

#include "itkSegmentationLevelSetFunction.h"
#include "itkNumericTraits.h"
namespace itk
{
/** \class ThresholdSegmentationLevelSetFunction
 *
 * \brief This function is used in ThresholdSegmentationLevelSetImageFilter to
 * segment structures in images based on intensity values.
 *
 * \par  SegmentationLevelSetFunction is a subclass of the generic LevelSetFunction.
 * It is useful for segmentations based on intensity values in an image.  It works
 * by constructing a speed term (feature image) with positive values inside an
 * intensity window (between a low and high threshold) and negative values
 * outside that intensity window.  The evolving level set front will lock onto
 * regions that are at the edges of the intensity window.
 *
 *  You may optionally add a Laplacian calculation on the image to the
 *  threshold-based speed term by setting the EdgeWeight parameter to a
 *  non-zero value.  The Laplacian term will cause the evolving surface to
 *  be more strongly attracted to image edges.   Several parameters control a
 *  preprocessing FeatureImage smoothing stage applied only to the Laplacian
 *  calculation.
 *
 *  \par
 *  Image \f$ f \f$ is thresholded pixel by pixel using upper threshold
 *  \f$ U \f$ and lower threshold \f$ L \f$ according to the following formula.
 *
 * \par
 *  \f$  f(x) = \left\{ \begin{array}{ll} g(x) - L & \mbox{if $(g)x < (U-L)/2 + L$} \\ U - g(x) & \mbox{otherwise}
 * \end{array} \right. \f$
 *
 * \sa SegmentationLevelSetImageFunction
 *  \sa ThresholdSegmentationLevelSetImageFilter
 * \ingroup ITKLevelSets
 */
template <typename TImageType, typename TFeatureImageType = TImageType>
class ITK_TEMPLATE_EXPORT ThresholdSegmentationLevelSetFunction
  : public SegmentationLevelSetFunction<TImageType, TFeatureImageType>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ThresholdSegmentationLevelSetFunction);

  /** Standard class type aliases. */
  using Self = ThresholdSegmentationLevelSetFunction;
  using Superclass = SegmentationLevelSetFunction<TImageType, TFeatureImageType>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;
  using FeatureImageType = TFeatureImageType;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ThresholdSegmentationLevelSetFunction);

  /** Extract some parameters from the superclass. */
  using typename Superclass::ImageType;
  using typename Superclass::ScalarValueType;
  using typename Superclass::FeatureScalarType;
  using typename Superclass::RadiusType;

  /** Extract some parameters from the superclass. */
  static constexpr unsigned int ImageDimension = Superclass::ImageDimension;

  /** Set/Get threshold values */
  void
  SetUpperThreshold(FeatureScalarType f)
  {
    m_UpperThreshold = f;
  }
  FeatureScalarType
  GetUpperThreshold() const
  {
    return m_UpperThreshold;
  }
  void
  SetLowerThreshold(FeatureScalarType f)
  {
    m_LowerThreshold = f;
  }
  FeatureScalarType
  GetLowerThreshold() const
  {
    return m_LowerThreshold;
  }

  void
  CalculateSpeedImage() override;

  void
  Initialize(const RadiusType & r) override
  {
    Superclass::Initialize(r);

    this->SetAdvectionWeight(ScalarValueType{});
    this->SetPropagationWeight(-1.0 * NumericTraits<ScalarValueType>::OneValue());
    this->SetCurvatureWeight(NumericTraits<ScalarValueType>::OneValue());
  }

  /** Set/Get the weight applied to the edge (Laplacian) attractor in the speed
   *  term function. Zero will turn this term off. */
  void
  SetEdgeWeight(const ScalarValueType p)
  {
    m_EdgeWeight = p;
  }

  ScalarValueType
  GetEdgeWeight() const
  {
    return m_EdgeWeight;
  }

  /** Anisotropic diffusion is applied to the FeatureImage before calculating
   * the Laplacian (edge) term. This method sets/gets the smoothing
   * conductance. */
  void
  SetSmoothingConductance(const ScalarValueType p)
  {
    m_SmoothingConductance = p;
  }

  ScalarValueType
  GetSmoothingConductance() const
  {
    return m_SmoothingConductance;
  }

  /** Anisotropic diffusion is applied to the FeatureImage before calculating
   * the Laplacian (edge) term. This method sets/gets the number of diffusion
   * iterations. */
  void
  SetSmoothingIterations(const int p)
  {
    m_SmoothingIterations = p;
  }

  int
  GetSmoothingIterations() const
  {
    return m_SmoothingIterations;
  }

  /** Anisotropic diffusion is applied to the FeatureImage before calculating
   * the Laplacian (edge) term. This method sets/gets the diffusion time
   * step. */
  void
  SetSmoothingTimeStep(const ScalarValueType i)
  {
    m_SmoothingTimeStep = i;
  }

  ScalarValueType
  GetSmoothingTimeStep() const
  {
    return m_SmoothingTimeStep;
  }

protected:
  ThresholdSegmentationLevelSetFunction()
  {
    m_UpperThreshold = NumericTraits<FeatureScalarType>::max();
    m_LowerThreshold = NumericTraits<FeatureScalarType>::NonpositiveMin();
    this->SetAdvectionWeight(0.0);
    this->SetPropagationWeight(1.0);
    this->SetCurvatureWeight(1.0);
    this->SetSmoothingIterations(5);
    this->SetSmoothingConductance(0.8);
    this->SetSmoothingTimeStep(0.1);
    this->SetEdgeWeight(0.0);
  }

  ~ThresholdSegmentationLevelSetFunction() override = default;

  void
  PrintSelf(std::ostream & os, Indent indent) const override
  {
    Superclass::PrintSelf(os, indent);
    os << indent << "UpperThreshold: " << m_UpperThreshold << std::endl;
    os << indent << "LowerThreshold: " << m_LowerThreshold << std::endl;
    os << indent << "EdgeWeight: " << m_EdgeWeight << std::endl;
    os << indent << "SmoothingTimeStep: " << m_SmoothingTimeStep << std::endl;
    os << indent << "SmoothingIterations: " << m_SmoothingIterations << std::endl;
    os << indent << "SmoothingConductance: " << m_SmoothingConductance << std::endl;
  }

  FeatureScalarType m_UpperThreshold{};
  FeatureScalarType m_LowerThreshold{};
  ScalarValueType   m_EdgeWeight{};
  ScalarValueType   m_SmoothingConductance{};
  int               m_SmoothingIterations{};
  ScalarValueType   m_SmoothingTimeStep{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkThresholdSegmentationLevelSetFunction.hxx"
#endif

#endif