File: itkVectorThresholdSegmentationLevelSetFunction.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (181 lines) | stat: -rw-r--r-- 6,037 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkVectorThresholdSegmentationLevelSetFunction_h
#define itkVectorThresholdSegmentationLevelSetFunction_h

#include "itkSegmentationLevelSetFunction.h"
#include "itkNumericTraits.h"
#include "itkMahalanobisDistanceMembershipFunction.h"
namespace itk
{
/** \class VectorThresholdSegmentationLevelSetFunction
 *
 * \brief This function is used in VectorThresholdSegmentationLevelSetImageFilter to
 * segment structures in images based on the Mahalanobis distance.
 *
 *   \par CREDITS
 *   This class was contributed to ITK by Stefan Lindenau
 *   https://www.itk.org/pipermail/insight-users/2003-December/005969.html
 *
 * \par  SegmentationLevelSetFunction is a subclass of the generic LevelSetFunction.
 * It useful for segmentations based on intensity values in an image.  It works
 * by constructing a speed term (feature image) with positive values inside an
 * intensity window (between a low and high threshold) and negative values
 * outside that intensity window.  The evolving level set front will lock onto
 * regions that are at the edges of the intensity window.
 *
 *
 *  \par
 *  Image \f$ f(x) \f$ is thresholded pixel by pixel using threshold \f$T\f$
 *  according to the following formula.
 *
 *  \par
 *  \f[
 *           f(x) = T - MahalanobisDistance(x)
 *  \f]
 *
 *  \sa SegmentationLevelSetImageFunction
 *  \sa ThresholdSegmentationLevelSetImageFilter
 *  \sa MahalanobisDistanceMembershipFunction
 * \ingroup ITKLevelSets
 */
template <typename TImageType, typename TFeatureImageType>
class ITK_TEMPLATE_EXPORT VectorThresholdSegmentationLevelSetFunction
  : public SegmentationLevelSetFunction<TImageType, TFeatureImageType>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(VectorThresholdSegmentationLevelSetFunction);

  /** Standard class type aliases. */
  using Self = VectorThresholdSegmentationLevelSetFunction;
  using Superclass = SegmentationLevelSetFunction<TImageType, TFeatureImageType>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;
  using FeatureImageType = TFeatureImageType;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(VectorThresholdSegmentationLevelSetFunction);

  /** Extract some parameters from the superclass. */
  using typename Superclass::ImageType;
  using typename Superclass::ScalarValueType;
  using typename Superclass::FeatureScalarType;
  using typename Superclass::RadiusType;

  /** Extract some parameters from the superclass. */
  static constexpr unsigned int ImageDimension = Superclass::ImageDimension;

  /** Extract the number of components in the vector pixel type . */
  using FeatureImagePixelType = typename FeatureImageType::PixelType;
  static constexpr unsigned int NumberOfComponents = FeatureImagePixelType::Dimension;

  using MahalanobisFunctionType = Statistics::MahalanobisDistanceMembershipFunction<FeatureScalarType>;
  using MahalanobisFunctionPointer = typename MahalanobisFunctionType::Pointer;
  using MeanVectorType = typename MahalanobisFunctionType::MeanVectorType;
  using CovarianceMatrixType = typename MahalanobisFunctionType::CovarianceMatrixType;

  /** Set/Get mean and covariance */
  void
  SetMean(const MeanVectorType & mean)
  {
    m_Mahalanobis->SetMean(mean);
  }
  const MeanVectorType &
  GetMean() const
  {
    return m_Mahalanobis->GetMean();
  }

  void
  SetCovariance(const CovarianceMatrixType & cov)
  {
    m_Mahalanobis->SetCovariance(cov);
  }
  const CovarianceMatrixType &
  GetCovariance() const
  {
    return m_Mahalanobis->GetCovariance();
  }

  /** Set/Get the threshold value for the MahalanobisDistance */
  void
  SetThreshold(ScalarValueType thr)
  {
    m_Threshold = thr;
  }

  ScalarValueType
  GetThreshold()
  {
    return m_Threshold;
  }

  void
  CalculateSpeedImage() override;

  void
  Initialize(const RadiusType & r) override
  {
    Superclass::Initialize(r);

    this->SetAdvectionWeight(ScalarValueType{});
    this->SetPropagationWeight(-1.0 * NumericTraits<ScalarValueType>::OneValue());
    this->SetCurvatureWeight(NumericTraits<ScalarValueType>::OneValue());
  }

protected:
  VectorThresholdSegmentationLevelSetFunction()
  {
    MeanVectorType       mean(NumberOfComponents);
    CovarianceMatrixType covariance(NumberOfComponents, NumberOfComponents);

    mean.Fill(typename FeatureScalarType::ValueType{});
    covariance.Fill(typename FeatureScalarType::ValueType{});

    m_Mahalanobis = MahalanobisFunctionType::New();
    m_Mahalanobis->SetMean(mean);
    m_Mahalanobis->SetCovariance(covariance);

    this->SetAdvectionWeight(0.0);
    this->SetPropagationWeight(1.0);
    this->SetThreshold(1.8);
  }

  ~VectorThresholdSegmentationLevelSetFunction() override = default;

  void
  PrintSelf(std::ostream & os, Indent indent) const override
  {
    Superclass::PrintSelf(os, indent);
    os << indent << "MahalanobisFunction: " << m_Mahalanobis << std::endl;
    os << indent << "ThresholdValue: " << m_Threshold << std::endl;
  }

  MahalanobisFunctionPointer m_Mahalanobis{};
  ScalarValueType            m_Threshold{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkVectorThresholdSegmentationLevelSetFunction.hxx"
#endif

#endif