1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkReinitializeLevelSetImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkShiftScaleImageFilter.h"
#include "itkTestingComparisonImageFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkMultiplyImageFilter.h"
// For debugging
#include "itkImageFileWriter.h"
namespace
{
// The following class is used to support callbacks
// on the filter in the pipeline that follows later
class ShowProgressObject
{
public:
ShowProgressObject(itk::ProcessObject * o) { m_Process = o; }
void
ShowProgress()
{
std::cout << "Progress " << m_Process->GetProgress() << std::endl;
}
itk::ProcessObject::Pointer m_Process;
};
// simple signed distance function
template <typename TPoint>
double
SimpleSignedDistance(const TPoint & p)
{
TPoint center;
center.Fill(50);
double radius = 19.5;
double accum = 0.0;
for (unsigned int j = 0; j < TPoint::PointDimension; ++j)
{
accum += itk::Math::sqr(p[j] - center[j]);
}
accum = std::sqrt(accum);
return (accum - radius);
}
} // namespace
int
itkReinitializeLevelSetImageFilterTest(int, char *[])
{
constexpr unsigned int ImageDimension = 2;
using PixelType = float;
using ImageType = itk::Image<PixelType, ImageDimension>;
using IndexType = ImageType::IndexType;
using PointType = itk::Point<double, ImageDimension>;
// Fill an input image with simple signed distance function
auto image = ImageType::New();
ImageType::SizeType size;
size.Fill(128);
ImageType::RegionType region(size);
image->SetRegions(region);
image->Allocate();
using Iterator = itk::ImageRegionIteratorWithIndex<ImageType>;
Iterator iter(image, region);
iter.GoToBegin();
while (!iter.IsAtEnd())
{
PointType point;
image->TransformIndexToPhysicalPoint(iter.GetIndex(), point);
iter.Set(SimpleSignedDistance(point));
++iter;
}
// Squash up the level sets by mulitplying with a scalar
using MultiplierType = itk::ShiftScaleImageFilter<ImageType, ImageType>;
auto multiplier = MultiplierType::New();
multiplier->SetInput(image);
multiplier->SetScale(0.5);
// multiplier->SetShift( 0.0 );
// Set up reinitialize level set image filter
using ReinitializerType = itk::ReinitializeLevelSetImageFilter<ImageType>;
auto reinitializer = ReinitializerType::New();
reinitializer->SetInput(multiplier->GetOutput());
ShowProgressObject progressWatch(reinitializer);
itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
command = itk::SimpleMemberCommand<ShowProgressObject>::New();
command->SetCallbackFunction(&progressWatch, &ShowProgressObject::ShowProgress);
reinitializer->AddObserver(itk::ProgressEvent(), command);
// For debugging
/*
{
using WriterType = itk::ImageFileWriter<ImageType>;
auto writer = WriterType::New();
writer->SetInput( image );
writer->SetFileName( "input.mhd" );
writer->Write();
}
{
using WriterType = itk::ImageFileWriter<ImageType>;
auto writer = WriterType::New();
writer->SetInput( reinitializer->GetOutput() );
writer->SetFileName( "output.mhd" );
writer->Write();
}
*/
// Check the output signed distance map is within threshold
using DifferenceType = itk::Testing::ComparisonImageFilter<ImageType, ImageType>;
auto difference = DifferenceType::New();
difference->SetTestInput(image);
difference->SetValidInput(reinitializer->GetOutput());
difference->Update();
using CalculatorType = itk::MinimumMaximumImageCalculator<ImageType>;
auto calculator = CalculatorType::New();
calculator->SetImage(difference->GetOutput());
calculator->Compute();
double maxAbsDifference = calculator->GetMaximum();
IndexType maxAbsDifferenceIndex = calculator->GetIndexOfMaximum();
std::cout << "Max. abs. difference = " << maxAbsDifference;
std::cout << " at " << maxAbsDifferenceIndex << std::endl;
if (maxAbsDifference > 1.0)
{
std::cout << "Difference above threshold of 1.0" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
// Check if inside/outside points remain the same after reinitialization
using CheckerType = itk::MultiplyImageFilter<ImageType, ImageType, ImageType>;
auto checker = CheckerType::New();
checker->SetInput1(image);
checker->SetInput2(reinitializer->GetOutput());
checker->Update();
calculator->SetImage(checker->GetOutput());
calculator->Compute();
double minValue = calculator->GetMinimum();
double maxValue = calculator->GetMaximum();
std::cout << "Min. product = " << minValue << std::endl;
std::cout << "Max. product = " << maxValue << std::endl;
if (minValue < 0.0)
{
std::cout << "Inside/Outside mismatch at ";
std::cout << calculator->GetIndexOfMinimum() << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
// Exercise other member functions
reinitializer->Print(std::cout);
// Exercise the narrowband version
reinitializer->SetLevelSetValue(1.0);
reinitializer->SetLevelSetValue(0.0);
reinitializer->NarrowBandingOn();
reinitializer->SetNarrowBandwidth(8);
reinitializer->Update();
using NodeContainerPointer = ReinitializerType::NodeContainerPointer;
NodeContainerPointer nodes = reinitializer->GetOutputNarrowBand();
std::cout << "Level set value = " << reinitializer->GetLevelSetValue() << std::endl;
std::cout << "Narrow banding = " << reinitializer->GetNarrowBanding() << std::endl;
std::cout << "Narrow bandwidth = " << reinitializer->GetOutputNarrowBandwidth() << std::endl;
std::cout << "No. nodes = " << nodes->Size() << std::endl;
// We will use the output narrowband from the last run as the input narrowband
reinitializer->SetInputNarrowBand(nodes);
reinitializer->Update();
// Check if inside/outside points remain the same after reinitialization
using NodeContainerPointer = ReinitializerType::NodeContainerPointer;
using NodeContainerType = ReinitializerType::NodeContainer;
using ContainerIterator = NodeContainerType::ConstIterator;
NodeContainerPointer nodes2 = reinitializer->GetOutputNarrowBand();
ContainerIterator nodeIter = nodes2->Begin();
ContainerIterator nodeEnd = nodes2->End();
while (nodeIter != nodeEnd)
{
ImageType::IndexType nodeIndex = nodeIter.Value().GetIndex();
double product = image->GetPixel(nodeIndex) * reinitializer->GetOutput()->GetPixel(nodeIndex);
if (product < 0.0)
{
std::cout << "Product: " << product;
std::cout << " at: " << nodeIndex << std::endl;
std::cout << "Inside/outside mismatch" << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
nodeIter++;
}
std::cout << "Test passed" << std::endl;
return EXIT_SUCCESS;
}
|