1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkSparseFieldFourthOrderLevelSetImageFilter.h"
#include "itkTestingMacros.h"
#include <iostream>
/*
* This test exercises the SparseFieldFourthOrderLevelSetImageFilter
* framework. A 2D image of a square is created and passed as input to the
* filter which performs 500 iterations. This application will perform
* isotropic fourth order diffusion on the input; therefore, the square will
* morph towards a circle. The classes tested are the following:
*
* SparseImage
* FiniteDifferenceSparseImageFilter
* FiniteDifferenceSparseImageFunction
* ImplicitManifoldNormalDiffusionFilter
* NormalVectorFunctionBase
* NormalVectorDiffusionFunction
* LevelSetFunctionWithRefitTerm
* SparseFieldFourthOrderLevelSetImageFilter
*
*/
namespace SFFOLSIFT
{ // local namespace for helper functions
const unsigned int HEIGHT = (128);
const unsigned int WIDTH = (128);
#define RADIUS (std::min(HEIGHT, WIDTH) / 4)
// Distance transform function for square
float
square(unsigned int x, unsigned int y)
{
float X, Y;
X = itk::Math::abs(x - static_cast<float>(WIDTH) / 2.0);
Y = itk::Math::abs(y - static_cast<float>(HEIGHT) / 2.0);
float dis;
if (!((X > RADIUS) && (Y > RADIUS)))
{
dis = RADIUS - std::max(X, Y);
}
else
{
dis = -std::sqrt((X - RADIUS) * (X - RADIUS) + (Y - RADIUS) * (Y - RADIUS));
}
return (dis);
}
// Evaluates a function at each pixel in the itk image
void
evaluate_function(itk::Image<float, 2> * im, float (*f)(unsigned int, unsigned int))
{
itk::Image<float, 2>::IndexType idx;
for (unsigned int x = 0; x < WIDTH; ++x)
{
idx[0] = x;
for (unsigned int y = 0; y < HEIGHT; ++y)
{
idx[1] = y;
im->SetPixel(idx, f(x, y));
}
}
}
} // namespace SFFOLSIFT
namespace itk
{
template <typename TInputImage, typename TOutputImage>
class IsotropicDiffusionLevelSetFilter : public SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>
{
public:
using Self = IsotropicDiffusionLevelSetFilter;
using Superclass = SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
itkOverrideGetNameOfClassMacro(IsotropicDiffusionLevelSetFilter);
itkNewMacro(Self);
using typename Superclass::SparseImageType;
using FunctionType = LevelSetFunctionWithRefitTerm<TOutputImage, SparseImageType>;
using RadiusType = typename FunctionType::RadiusType;
protected:
typename FunctionType::Pointer m_Function;
IsotropicDiffusionLevelSetFilter()
{
RadiusType radius;
for (unsigned int j = 0; j < TInputImage::ImageDimension; ++j)
{
radius[j] = 1;
}
m_Function = FunctionType::New();
this->SetLevelSetFunction(m_Function);
this->SetNumberOfLayers(this->GetMinimumNumberOfLayers());
this->SetMaxNormalIteration(10);
this->SetMaxRefitIteration(40);
m_Function->Initialize(radius);
this->SetNormalProcessType(0);
m_Function->Print(std::cout);
}
bool
Halt() override
{
if (this->GetElapsedIterations() == 50)
{
return true;
}
else
{
return false;
}
}
};
} // end namespace itk
int
itkSparseFieldFourthOrderLevelSetImageFilterTest(int, char *[])
{
using ImageType = itk::Image<float, 2>;
auto image = ImageType::New();
ImageType::RegionType r;
ImageType::SizeType sz = { { SFFOLSIFT::HEIGHT, SFFOLSIFT::WIDTH } };
ImageType::IndexType idx = { { 0, 0 } };
r.SetSize(sz);
r.SetIndex(idx);
image->SetRegions(r);
image->Allocate();
SFFOLSIFT::evaluate_function(image, SFFOLSIFT::square);
using FilterType = itk::IsotropicDiffusionLevelSetFilter<ImageType, ImageType>;
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(
filter, IsotropicDiffusionLevelSetFilter, SparseFieldFourthOrderLevelSetImageFilter);
unsigned int maxRefitIteration = 0;
filter->SetMaxRefitIteration(maxRefitIteration);
ITK_TEST_SET_GET_VALUE(maxRefitIteration, filter->GetMaxRefitIteration());
unsigned int maxNormalIteration = 100;
filter->SetMaxNormalIteration(maxNormalIteration);
ITK_TEST_SET_GET_VALUE(maxNormalIteration, filter->GetMaxNormalIteration());
typename FilterType::ValueType curvatureBandWidth = 4;
filter->SetCurvatureBandWidth(curvatureBandWidth);
ITK_TEST_SET_GET_VALUE(curvatureBandWidth, filter->GetCurvatureBandWidth());
typename FilterType::ValueType rmsChangeNormalProcessTrigger = 0.001;
filter->SetRMSChangeNormalProcessTrigger(rmsChangeNormalProcessTrigger);
ITK_TEST_SET_GET_VALUE(rmsChangeNormalProcessTrigger, filter->GetRMSChangeNormalProcessTrigger());
int normalProcessType = 0;
filter->SetNormalProcessType(normalProcessType);
ITK_TEST_SET_GET_VALUE(normalProcessType, filter->GetNormalProcessType());
typename FilterType::ValueType normalProcessConductance{};
filter->SetNormalProcessConductance(normalProcessConductance);
ITK_TEST_SET_GET_VALUE(normalProcessConductance, filter->GetNormalProcessConductance());
bool normalProcessUnsharpFlag = false;
filter->SetNormalProcessUnsharpFlag(normalProcessUnsharpFlag);
ITK_TEST_SET_GET_BOOLEAN(filter, NormalProcessUnsharpFlag, normalProcessUnsharpFlag);
typename FilterType::ValueType normalProcessUnsharpWeight{};
filter->SetNormalProcessUnsharpWeight(normalProcessUnsharpWeight);
ITK_TEST_SET_GET_VALUE(normalProcessUnsharpWeight, filter->GetNormalProcessUnsharpWeight());
filter->SetInput(image);
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
std::cout << "Test finished." << std::endl;
return EXIT_SUCCESS;
}
|