File: itkSparseFieldFourthOrderLevelSetImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (206 lines) | stat: -rw-r--r-- 6,354 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkSparseFieldFourthOrderLevelSetImageFilter.h"
#include "itkTestingMacros.h"
#include <iostream>

/*
 * This test exercises the SparseFieldFourthOrderLevelSetImageFilter
 * framework. A 2D image of a square is created and passed as input to the
 * filter which performs 500 iterations. This application will perform
 * isotropic fourth order diffusion on the input; therefore, the square will
 * morph towards a circle. The classes tested are the following:
 *
 * SparseImage
 * FiniteDifferenceSparseImageFilter
 * FiniteDifferenceSparseImageFunction
 * ImplicitManifoldNormalDiffusionFilter
 * NormalVectorFunctionBase
 * NormalVectorDiffusionFunction
 * LevelSetFunctionWithRefitTerm
 * SparseFieldFourthOrderLevelSetImageFilter
 *
 */

namespace SFFOLSIFT
{ // local namespace for helper functions

const unsigned int HEIGHT = (128);
const unsigned int WIDTH = (128);

#define RADIUS (std::min(HEIGHT, WIDTH) / 4)

// Distance transform function for square
float
square(unsigned int x, unsigned int y)
{
  float X, Y;
  X = itk::Math::abs(x - static_cast<float>(WIDTH) / 2.0);
  Y = itk::Math::abs(y - static_cast<float>(HEIGHT) / 2.0);
  float dis;
  if (!((X > RADIUS) && (Y > RADIUS)))
  {
    dis = RADIUS - std::max(X, Y);
  }
  else
  {
    dis = -std::sqrt((X - RADIUS) * (X - RADIUS) + (Y - RADIUS) * (Y - RADIUS));
  }
  return (dis);
}

// Evaluates a function at each pixel in the itk image
void
evaluate_function(itk::Image<float, 2> * im, float (*f)(unsigned int, unsigned int))

{
  itk::Image<float, 2>::IndexType idx;
  for (unsigned int x = 0; x < WIDTH; ++x)
  {
    idx[0] = x;
    for (unsigned int y = 0; y < HEIGHT; ++y)
    {
      idx[1] = y;
      im->SetPixel(idx, f(x, y));
    }
  }
}

} // namespace SFFOLSIFT

namespace itk
{
template <typename TInputImage, typename TOutputImage>
class IsotropicDiffusionLevelSetFilter : public SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>
{
public:
  using Self = IsotropicDiffusionLevelSetFilter;
  using Superclass = SparseFieldFourthOrderLevelSetImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  itkOverrideGetNameOfClassMacro(IsotropicDiffusionLevelSetFilter);
  itkNewMacro(Self);

  using typename Superclass::SparseImageType;
  using FunctionType = LevelSetFunctionWithRefitTerm<TOutputImage, SparseImageType>;
  using RadiusType = typename FunctionType::RadiusType;

protected:
  typename FunctionType::Pointer m_Function;
  IsotropicDiffusionLevelSetFilter()
  {
    RadiusType radius;
    for (unsigned int j = 0; j < TInputImage::ImageDimension; ++j)
    {
      radius[j] = 1;
    }

    m_Function = FunctionType::New();
    this->SetLevelSetFunction(m_Function);
    this->SetNumberOfLayers(this->GetMinimumNumberOfLayers());

    this->SetMaxNormalIteration(10);
    this->SetMaxRefitIteration(40);
    m_Function->Initialize(radius);
    this->SetNormalProcessType(0);

    m_Function->Print(std::cout);
  }

  bool
  Halt() override
  {
    if (this->GetElapsedIterations() == 50)
    {
      return true;
    }
    else
    {
      return false;
    }
  }
};

} // end namespace itk

int
itkSparseFieldFourthOrderLevelSetImageFilterTest(int, char *[])
{
  using ImageType = itk::Image<float, 2>;

  auto image = ImageType::New();

  ImageType::RegionType r;
  ImageType::SizeType   sz = { { SFFOLSIFT::HEIGHT, SFFOLSIFT::WIDTH } };
  ImageType::IndexType  idx = { { 0, 0 } };
  r.SetSize(sz);
  r.SetIndex(idx);

  image->SetRegions(r);
  image->Allocate();

  SFFOLSIFT::evaluate_function(image, SFFOLSIFT::square);
  using FilterType = itk::IsotropicDiffusionLevelSetFilter<ImageType, ImageType>;
  auto filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(
    filter, IsotropicDiffusionLevelSetFilter, SparseFieldFourthOrderLevelSetImageFilter);


  unsigned int maxRefitIteration = 0;
  filter->SetMaxRefitIteration(maxRefitIteration);
  ITK_TEST_SET_GET_VALUE(maxRefitIteration, filter->GetMaxRefitIteration());

  unsigned int maxNormalIteration = 100;
  filter->SetMaxNormalIteration(maxNormalIteration);
  ITK_TEST_SET_GET_VALUE(maxNormalIteration, filter->GetMaxNormalIteration());

  typename FilterType::ValueType curvatureBandWidth = 4;
  filter->SetCurvatureBandWidth(curvatureBandWidth);
  ITK_TEST_SET_GET_VALUE(curvatureBandWidth, filter->GetCurvatureBandWidth());

  typename FilterType::ValueType rmsChangeNormalProcessTrigger = 0.001;
  filter->SetRMSChangeNormalProcessTrigger(rmsChangeNormalProcessTrigger);
  ITK_TEST_SET_GET_VALUE(rmsChangeNormalProcessTrigger, filter->GetRMSChangeNormalProcessTrigger());

  int normalProcessType = 0;
  filter->SetNormalProcessType(normalProcessType);
  ITK_TEST_SET_GET_VALUE(normalProcessType, filter->GetNormalProcessType());

  typename FilterType::ValueType normalProcessConductance{};
  filter->SetNormalProcessConductance(normalProcessConductance);
  ITK_TEST_SET_GET_VALUE(normalProcessConductance, filter->GetNormalProcessConductance());

  bool normalProcessUnsharpFlag = false;
  filter->SetNormalProcessUnsharpFlag(normalProcessUnsharpFlag);
  ITK_TEST_SET_GET_BOOLEAN(filter, NormalProcessUnsharpFlag, normalProcessUnsharpFlag);

  typename FilterType::ValueType normalProcessUnsharpWeight{};
  filter->SetNormalProcessUnsharpWeight(normalProcessUnsharpWeight);
  ITK_TEST_SET_GET_VALUE(normalProcessUnsharpWeight, filter->GetNormalProcessUnsharpWeight());

  filter->SetInput(image);

  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());


  std::cout << "Test finished." << std::endl;
  return EXIT_SUCCESS;
}