1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLevelSetEquationAdvectionTerm_h
#define itkLevelSetEquationAdvectionTerm_h
#include "itkLevelSetEquationTermBase.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkVector.h"
#include "vnl/vnl_matrix_fixed.h"
namespace itk
{
/**
* \class LevelSetEquationAdvectionTerm
* \brief Derived class to represents an advection term in the level-set evolution PDE
*
* \f[
* AdvectionImage\left( p \right) \bullet \nabla \phi\left( p \right)
* \f]
*
* \li \f$ AdvectionImage \left( p \right) \f$ is the advection image provided by the user.
* \li \f$ \cdot \bullet \cdot \f$ denotes the usual dot product
* \li \f$ \nabla \phi \f$ denotes the gradient of the level set function \f$ \phi \f$.
*
* The advection image can be directly provided by the user; or by
* default, it is computed as the gradient of the input image. In this last
* case, it can be smoothed by the means of DerivativeSigma.
*
* \tparam TInput Input Image Type
* \tparam TLevelSetContainer Level set function container type
* \ingroup ITKLevelSetsv4
*/
template <typename TInput, // Input image or mesh
typename TLevelSetContainer>
class ITK_TEMPLATE_EXPORT LevelSetEquationAdvectionTerm : public LevelSetEquationTermBase<TInput, TLevelSetContainer>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(LevelSetEquationAdvectionTerm);
using Self = LevelSetEquationAdvectionTerm;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using Superclass = LevelSetEquationTermBase<TInput, TLevelSetContainer>;
/** Method for creation through object factory */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(LevelSetEquationAdvectionTerm);
using typename Superclass::InputImageType;
using typename Superclass::InputImagePointer;
using typename Superclass::InputPixelType;
using typename Superclass::InputPixelRealType;
using typename Superclass::LevelSetContainerType;
using typename Superclass::LevelSetContainerPointer;
using typename Superclass::LevelSetType;
using typename Superclass::LevelSetPointer;
using typename Superclass::LevelSetOutputPixelType;
using typename Superclass::LevelSetOutputRealType;
using typename Superclass::LevelSetInputIndexType;
using typename Superclass::LevelSetGradientType;
using typename Superclass::LevelSetHessianType;
using typename Superclass::LevelSetIdentifierType;
using typename Superclass::LevelSetDataType;
using typename Superclass::HeavisideType;
using typename Superclass::HeavisideConstPointer;
static constexpr unsigned int ImageDimension = InputImageType::ImageDimension;
using VectorType = LevelSetGradientType;
using AdvectionImageType = Image<VectorType, Self::ImageDimension>;
using AdvectionImagePointer = typename AdvectionImageType::Pointer;
void
SetAdvectionImage(AdvectionImageType * iImage);
itkGetModifiableObjectMacro(AdvectionImage, AdvectionImageType);
itkSetMacro(DerivativeSigma, LevelSetOutputRealType);
itkGetMacro(DerivativeSigma, LevelSetOutputRealType);
/** Neighborhood radius type */
using DefaultBoundaryConditionType = ZeroFluxNeumannBoundaryCondition<InputImageType>;
using RadiusType = typename ConstNeighborhoodIterator<InputImageType>::RadiusType;
using NeighborhoodType = ConstNeighborhoodIterator<InputImageType, DefaultBoundaryConditionType>;
using NeighborhoodScalesType = Vector<LevelSetOutputRealType, Self::ImageDimension>;
/** \todo to be documented. */
void
Update() override;
/** Initialize the parameters in the terms prior to an iteration */
void
InitializeParameters() override;
/** \todo to be documented. */
void
Initialize(const LevelSetInputIndexType &) override;
/** Supply updates at pixels to keep the term parameters always updated */
void
UpdatePixel(const LevelSetInputIndexType & iP,
const LevelSetOutputRealType & oldValue,
const LevelSetOutputRealType & newValue) override;
protected:
LevelSetEquationAdvectionTerm();
~LevelSetEquationAdvectionTerm() override = default;
AdvectionImagePointer m_AdvectionImage{};
/** Return the spatial speed dependence a given pixel location
* Usually, it is constant across the image domain */
VectorType
AdvectionSpeed(const LevelSetInputIndexType & iP) const;
/** Returns the term contribution for a given location iP, i.e.
* \f$ \omega_i( p ) \f$. */
LevelSetOutputRealType
Value(const LevelSetInputIndexType & iP) override;
LevelSetOutputRealType
Value(const LevelSetInputIndexType & iP, const LevelSetDataType & iData) override;
LevelSetOutputRealType m_NeighborhoodScales[ImageDimension]{};
private:
LevelSetOutputRealType m_DerivativeSigma{};
bool m_AutoGenerateAdvectionImage{};
void
GenerateAdvectionImage();
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkLevelSetEquationAdvectionTerm.hxx"
#endif
#endif
|