1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLevelSetEquationCurvatureTerm_h
#define itkLevelSetEquationCurvatureTerm_h
#include "itkLevelSetEquationTermBase.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkVector.h"
#include "vnl/vnl_matrix_fixed.h"
namespace itk
{
/**
* \class LevelSetEquationCurvatureTerm
* \brief Derived class to represents a curvature term in the level-set evolution PDE
*
* \f[
* CurvatureImage( p ) \cdot \kappa( p )
* \f]
*
* \li CurvatureImage denotes the curvature image set by the user
* \li \f$ \kappa( p ) \f$ denotes the mean curvature of the level set function,
* i.e. \f$ \kappa( p ) = \text{div} \left( \frac{ \nabla \phi( p ) }{ \left\| \nabla \phi(p) \right\| } \right) \f$
*
* \tparam TInput Input Image Type
* \tparam TLevelSetContainer Level set function container type
* \ingroup ITKLevelSetsv4
*/
template <typename TInput, // Input image or mesh
typename TLevelSetContainer,
typename TCurvatureImage = TInput>
class ITK_TEMPLATE_EXPORT LevelSetEquationCurvatureTerm : public LevelSetEquationTermBase<TInput, TLevelSetContainer>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(LevelSetEquationCurvatureTerm);
using Self = LevelSetEquationCurvatureTerm;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using Superclass = LevelSetEquationTermBase<TInput, TLevelSetContainer>;
/** Method for creation through object factory */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(LevelSetEquationCurvatureTerm);
using typename Superclass::InputImageType;
using typename Superclass::InputImagePointer;
using typename Superclass::InputPixelType;
using typename Superclass::InputPixelRealType;
using typename Superclass::LevelSetContainerType;
using typename Superclass::LevelSetContainerPointer;
using typename Superclass::LevelSetType;
using typename Superclass::LevelSetPointer;
using typename Superclass::LevelSetOutputPixelType;
using typename Superclass::LevelSetOutputRealType;
using typename Superclass::LevelSetInputIndexType;
using typename Superclass::LevelSetGradientType;
using typename Superclass::LevelSetHessianType;
using typename Superclass::LevelSetIdentifierType;
using typename Superclass::HeavisideType;
using typename Superclass::HeavisideConstPointer;
using typename Superclass::LevelSetDataType;
static constexpr unsigned int ImageDimension = InputImageType::ImageDimension;
using CurvatureImageType = TCurvatureImage;
using CurvatureImagePointer = typename CurvatureImageType::Pointer;
/** Set/Get the propagation image. By default, if no PropagationImage has
been set, it casts the input image and uses it in the term contribution
calculation. */
void
SetCurvatureImage(CurvatureImageType * iImage);
itkGetModifiableObjectMacro(CurvatureImage, CurvatureImageType);
itkSetMacro(UseCurvatureImage, bool);
itkGetMacro(UseCurvatureImage, bool);
itkBooleanMacro(UseCurvatureImage);
/** Neighborhood radius type */
using DefaultBoundaryConditionType = ZeroFluxNeumannBoundaryCondition<InputImageType>;
using RadiusType = typename ConstNeighborhoodIterator<InputImageType>::RadiusType;
using NeighborhoodType = ConstNeighborhoodIterator<InputImageType, DefaultBoundaryConditionType>;
using NeighborhoodScalesType = Vector<LevelSetOutputRealType, Self::ImageDimension>;
/** Update the term parameter values at end of iteration */
void
Update() override;
/** Initialize the parameters in the terms prior to an iteration */
void
InitializeParameters() override;
/** Initialize term parameters in the dense case by computing for each pixel location */
void
Initialize(const LevelSetInputIndexType &) override;
/** Supply updates at pixels to keep the term parameters always updated */
void
UpdatePixel(const LevelSetInputIndexType & iP,
const LevelSetOutputRealType & oldValue,
const LevelSetOutputRealType & newValue) override;
protected:
LevelSetEquationCurvatureTerm();
~LevelSetEquationCurvatureTerm() override = default;
/** Returns the term contribution for a given location iP, i.e.
* \f$ \omega_i( p ) \f$. */
LevelSetOutputRealType
Value(const LevelSetInputIndexType & iP) override;
/** Returns the term contribution for a given location iP, i.e.
* \f$ \omega_i( p ) \f$. */
LevelSetOutputRealType
Value(const LevelSetInputIndexType & iP, const LevelSetDataType & iData) override;
LevelSetOutputRealType m_NeighborhoodScales[ImageDimension]{};
CurvatureImagePointer m_CurvatureImage{};
bool m_UseCurvatureImage{};
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkLevelSetEquationCurvatureTerm.hxx"
#endif
#endif
|