File: itkMRFImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (479 lines) | stat: -rw-r--r-- 15,400 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Insight classes
#include "itkMRFImageFilter.h"

#include "itkImageGaussianModelEstimator.h"
#include "itkMahalanobisDistanceMembershipFunction.h"
#include "itkMinimumDecisionRule.h"


// Data definitions
#define IMGWIDTH 6
#define IMGHEIGHT 6
#define NFRAMES 3
#define NUMBANDS 2
#define NDIMENSION 3
#define NUM_CLASSES 3
#define MAX_NUM_ITER 5
#define NEIGHBORHOOD_RAD 1


int
itkMRFImageFilterTest(int, char *[])
{

  //------------------------------------------------------
  // Create a simple test image with width, height, and
  // depth 4 vectors each with each vector having data for
  // 2 bands.
  //------------------------------------------------------
  using VecImageType = itk::Image<itk::Vector<double, NUMBANDS>, NDIMENSION>;

  auto vecImage = VecImageType::New();

  using VecImagePixelType = VecImageType::PixelType;

  VecImageType::SizeType vecImgSize = { { IMGWIDTH, IMGHEIGHT, NFRAMES } };

  VecImageType::IndexType index;
  index.Fill(0);

  VecImageType::RegionType region;

  region.SetSize(vecImgSize);
  region.SetIndex(index);

  vecImage->SetLargestPossibleRegion(region);
  vecImage->SetBufferedRegion(region);
  vecImage->Allocate();

  enum
  {
    VecImageDimension = VecImageType::ImageDimension
  };
  using VecIterator = itk::ImageRegionIterator<VecImageType>;

  VecIterator outIt(vecImage, vecImage->GetBufferedRegion());

  // Set up the vector to store the image  data
  using DataVector = VecImageType::PixelType;
  DataVector dblVec;

  int i, k;
  int halfWidth = static_cast<int>(vecImgSize[0]) / 2;
  int halfHeight = static_cast<int>(vecImgSize[1]) / 2;

  //--------------------------------------------------------------------------
  // Manually create and store each vector
  //--------------------------------------------------------------------------
  // Slice 1
  //--------------------------------------------------------------------------
  // Row 1-3
  for (k = 0; k < halfHeight; ++k)
  {
    // Vector no. 1-3
    dblVec[0] = 21;
    dblVec[1] = 19;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }

    // Vector no. 4-6
    dblVec[0] = 18;
    dblVec[1] = 14;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }
  }

  // Row 4-6
  for (k = 0; k < halfHeight; ++k)
  {
    // Vector no. 1-3
    dblVec[0] = 15;
    dblVec[1] = 11;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }

    // Vector no. 4-6
    dblVec[0] = 10;
    dblVec[1] = 16;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }
  }

  //--------------------------------------------------------------------------
  // Slice 2
  //--------------------------------------------------------------------------
  // Row 1-3
  for (k = 0; k < halfHeight; ++k)
  {
    // Vector no. 1-3 Row k
    dblVec[0] = 14;
    dblVec[1] = 20;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }

    // Vector no. 4-6 Row k
    dblVec[0] = 18;
    dblVec[1] = 22;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }
  }

  // Row 4-6
  for (k = 0; k < halfHeight; ++k)
  {
    // Vector no. 1-3 Row k
    dblVec[0] = 15;
    dblVec[1] = 15;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }

    // Vector no. 4-6 Row k
    dblVec[0] = 12;
    dblVec[1] = 12;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }
  }

  //--------------------------------------------------------------------------
  // Slice 3
  //--------------------------------------------------------------------------
  // Row 1-3
  for (k = 0; k < halfHeight; ++k)
  {
    // Vector no. 1-3 Row k
    dblVec[0] = 19;
    dblVec[1] = 20;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }

    // Vector no. 4-6 Row k
    dblVec[0] = 19;
    dblVec[1] = 21;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }
  }

  // Row 4-6
  for (k = 0; k < halfHeight; ++k)
  {
    // Vector no. 1-3 Row k
    dblVec[0] = 12;
    dblVec[1] = 12;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }

    // Vector no. 4-6 Row k
    dblVec[0] = 11;
    dblVec[1] = 10;
    for (i = 0; i < halfWidth; ++i, ++outIt)
    {
      outIt.Set(dblVec);
    }
  }

  //---------------------------------------------------------------
  // Generate the training data
  //---------------------------------------------------------------
  using ClassImageType = itk::Image<unsigned short, NDIMENSION>;
  auto classImage = ClassImageType::New();

  ClassImageType::SizeType classImgSize = { { IMGWIDTH, IMGHEIGHT, NFRAMES } };

  ClassImageType::IndexType classindex;
  classindex.Fill(0);

  ClassImageType::RegionType classregion;

  classregion.SetSize(classImgSize);
  classregion.SetIndex(classindex);

  classImage->SetLargestPossibleRegion(classregion);
  classImage->SetBufferedRegion(classregion);
  classImage->Allocate();

  // setup the iterators
  using ClassImagePixelType = ClassImageType::PixelType;

  using ClassImageIterator = itk::ImageRegionIterator<ClassImageType>;

  ClassImageIterator classoutIt(classImage, classImage->GetBufferedRegion());
  //--------------------------------------------------------------------------
  // Manually create and store each vector
  //--------------------------------------------------------------------------
  // Slice 1
  //--------------------------------------------------------------------------
  // Row 1-3

  for (k = 0; k < halfHeight; ++k)
  {
    // Vector no. 1-3 Row k
    for (i = 0; i < (halfWidth * 2); ++i, ++classoutIt)
    {
      classoutIt.Set(2);
    }
  }

  // Row 4-6
  for (k = 0; k < halfHeight; ++k)
  {
    for (i = 0; i < (halfWidth * 2); ++i, ++classoutIt)
    {
      classoutIt.Set(1);
    }
  }
  //--------------------------------------------------------------------------
  // Slice 2
  //--------------------------------------------------------------------------
  // Row 1-6
  for (k = 0; k < (halfHeight * 2); ++k)
  {
    // Vector no. 1-3 Row k
    for (i = 0; i < (halfWidth * 2); ++i, ++classoutIt)
    {
      classoutIt.Set(0);
    }
  }

  //--------------------------------------------------------------------------
  // Slice 3
  //--------------------------------------------------------------------------
  for (k = 0; k < halfHeight; ++k)
  {
    // Vector no. 1-3 Row k
    for (i = 0; i < (halfWidth * 2); ++i, ++classoutIt)
    {
      classoutIt.Set(2);
    }
  }

  // Row 4-6
  for (k = 0; k < halfHeight; ++k)
  {
    for (i = 0; i < (halfWidth * 2); ++i, ++classoutIt)
    {
      classoutIt.Set(1);
    }
  }

  //----------------------------------------------------------------------
  // Test code for the supervised classifier algorithm
  //----------------------------------------------------------------------

  //---------------------------------------------------------------------
  // Multiband data is now available in the right format
  //---------------------------------------------------------------------

  //----------------------------------------------------------------------
  // Set membership function (Using the statistics objects)
  //----------------------------------------------------------------------

  namespace stat = itk::Statistics;

  using MembershipFunctionType = stat::MahalanobisDistanceMembershipFunction<VecImagePixelType>;
  using MembershipFunctionPointer = MembershipFunctionType::Pointer;

  using MembershipFunctionPointerVector = std::vector<MembershipFunctionPointer>;

  //----------------------------------------------------------------------
  // Set the image model estimator (train the class models)
  //----------------------------------------------------------------------
  using ImageGaussianModelEstimatorType =
    itk::ImageGaussianModelEstimator<VecImageType, MembershipFunctionType, ClassImageType>;

  auto applyEstimateModel = ImageGaussianModelEstimatorType::New();

  applyEstimateModel->SetNumberOfModels(NUM_CLASSES);
  applyEstimateModel->SetInputImage(vecImage);
  applyEstimateModel->SetTrainingImage(classImage);

  // Run the gaussian classifier algorithm
  applyEstimateModel->Update();
  applyEstimateModel->Print(std::cout);

  MembershipFunctionPointerVector membershipFunctions = applyEstimateModel->GetMembershipFunctions();

  //----------------------------------------------------------------------
  // Set the decision rule
  //----------------------------------------------------------------------
  using DecisionRuleType = itk::Statistics::MinimumDecisionRule;
  auto myDecisionRule = DecisionRuleType::New();

  //----------------------------------------------------------------------
  // Set the classifier to be used and assigne the parameters for the
  // supervised classifier algorithm except the input image which is
  // grabbed from the MRF application pipeline.
  //----------------------------------------------------------------------
  //---------------------------------------------------------------------
  using ClassifierType = itk::ImageClassifierBase<VecImageType, ClassImageType>;

  using ClassifierPointer = ClassifierType::Pointer;
  ClassifierPointer myClassifier = ClassifierType::New();
  // Set the Classifier parameters
  myClassifier->SetNumberOfClasses(NUM_CLASSES);

  // Set the decision rule
  myClassifier->SetDecisionRule((itk::Statistics::DecisionRule *)myDecisionRule);

  // Add the membership functions
  for (unsigned int ii = 0; ii < NUM_CLASSES; ++ii)
  {
    myClassifier->AddMembershipFunction(membershipFunctions[ii]);
  }

  //----------------------------------------------------------------------
  // Set the MRF labeller and populate the parameters
  //----------------------------------------------------------------------

  // Set the MRF labeller
  using MRFImageFilterType = itk::MRFImageFilter<VecImageType, ClassImageType>;
  auto applyMRFImageFilter = MRFImageFilterType::New();

  // Set the MRF labeller parameters
  applyMRFImageFilter->SetNumberOfClasses(NUM_CLASSES);
  applyMRFImageFilter->SetMaximumNumberOfIterations(MAX_NUM_ITER);
  applyMRFImageFilter->SetErrorTolerance(0.10);
  applyMRFImageFilter->SetSmoothingFactor(1);

  // For setting up a square/cubic or hypercubic neighborhood
  applyMRFImageFilter->SetNeighborhoodRadius(NEIGHBORHOOD_RAD);

  // For setting up a rectangular/cuboidal or hypercuboidal neighborhood
  // itk::Size<NDIMENSION> radius = {{1, 10, 5}};
  // applyMRFImageFilter->SetNeighborhoodRadius( radius );

  applyMRFImageFilter->SetInput(vecImage);
  applyMRFImageFilter->SetClassifier(myClassifier);

  // Kick off the MRF labeller function
  applyMRFImageFilter->Update();

  applyMRFImageFilter->Print(std::cout);
  std::cout << "Number of Iterations : " << applyMRFImageFilter->GetNumberOfIterations() << std::endl;
  std::cout << "Stop condition: (1) Maximum number of iterations (2) Error tolerance:  "
            << applyMRFImageFilter->GetStopCondition() << std::endl;

  ClassImageType::Pointer outClassImage = applyMRFImageFilter->GetOutput();

  // Testing of different parameter access functions in the filter
  std::cout << "The number of classes labelled was: " << applyMRFImageFilter->GetNumberOfClasses() << std::endl;
  std::cout << "The maximum number of iterations were: " << applyMRFImageFilter->GetMaximumNumberOfIterations()
            << std::endl;
  std::cout << "The error tolerace threshold was: " << applyMRFImageFilter->GetErrorTolerance() << std::endl;
  std::cout << "The smoothing MRF parameter used was: " << applyMRFImageFilter->GetSmoothingFactor() << std::endl;
  std::cout << "The MRF neighborhood weights are: " << std::endl;

  // Test other optional access functions to test coverage
  std::vector<double> MRFNeighborhoodWeight = applyMRFImageFilter->GetMRFNeighborhoodWeight();
  std::vector<double> testNewNeighborhoodWeight(MRFNeighborhoodWeight.size(), 1);

  applyMRFImageFilter->SetMRFNeighborhoodWeight(testNewNeighborhoodWeight);

  // Print the mrf labelled image
  ClassImageIterator labeloutIt(outClassImage, outClassImage->GetBufferedRegion());

  //---------------------------------------------------------------------
  // Set up the neighborhood iterators and the valid neighborhoods
  // for iteration
  //---------------------------------------------------------------------

  // Set up the nighborhood iterators
  // Labelled image neighborhood iterator typedef

  using OutImageNeighborhoodIterator = itk::NeighborhoodIterator<ClassImageType>;
  using OutImageNeighborhoodRadiusType = OutImageNeighborhoodIterator::RadiusType;
  using OutImageFacesCalculator = itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<ClassImageType>;
  using OutImageFaceListType = OutImageFacesCalculator::FaceListType;

  OutImageNeighborhoodRadiusType outImageNeighborhoodRadius;
  outImageNeighborhoodRadius.Fill(1);

  // Define the face list for the input/labelled image
  OutImageFacesCalculator outImageFacesCalculator;

  OutImageFaceListType outImageFaceList;

  // Compute the faces for the neighborhoods in the input/labelled image
  outImageFaceList =
    outImageFacesCalculator(outClassImage, outClassImage->GetBufferedRegion(), outImageNeighborhoodRadius);

  // Set up a face list iterator
  auto outImageFaceListIter = outImageFaceList.begin();

  // Walk through the entire data set (not visiting the boundaries )
  OutImageNeighborhoodIterator nOutImageNeighborhoodIter(
    outImageNeighborhoodRadius, outClassImage, *outImageFaceListIter);

  int sum = 0;
  using ClassImagePixelType = ClassImageType::PixelType;
  ClassImagePixelType * outLabel;

  // Loop through the labelled region and add the pixel labels
  while (!nOutImageNeighborhoodIter.IsAtEnd())
  {
    outLabel = nOutImageNeighborhoodIter.GetCenterValue();
    sum += static_cast<int>(*outLabel);
    ++nOutImageNeighborhoodIter;
  }
  // Loop through the data set

  if (sum == 22)
  {
    std::cout << "MRF labeller Test Passed" << std::endl;
  }
  else
  {
    std::cout << "MRF labeller Test failed. Label sum is " << sum << " and not 22." << std::endl;
    return EXIT_FAILURE;
  }

  // Test streaming enumeration for MRFImageFilterEnums::MRFStop elements
  const std::set<itk::MRFImageFilterEnums::MRFStop> allMRFStop{
    itk::MRFImageFilterEnums::MRFStop::MaximumNumberOfIterations, itk::MRFImageFilterEnums::MRFStop::ErrorTolerance
  };
  for (const auto & ee : allMRFStop)
  {
    std::cout << "STREAMED ENUM VALUE MRFImageFilterEnums::MRFStop: " << ee << std::endl;
  }

  return EXIT_SUCCESS;
}