File: itkConfidenceConnectedImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (181 lines) | stat: -rw-r--r-- 6,938 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkConfidenceConnectedImageFilter_h
#define itkConfidenceConnectedImageFilter_h

#include "itkImage.h"
#include "itkImageToImageFilter.h"

namespace itk
{
/**
 * \class ConfidenceConnectedImageFilter
 * \brief Segment pixels with similar statistics using connectivity
 *
 * This filter extracts a connected set of pixels whose pixel
 * intensities are consistent with the pixel statistics of a seed
 * point. The mean and variance across a neighborhood (8-connected,
 * 26-connected, etc.) are calculated for a seed point.  Then
 * pixels connected to this seed point whose values are within
 * the confidence interval for the seed point are grouped. The
 * width of the confidence interval is controlled by the "Multiplier"
 * variable (the confidence interval is the mean plus or minus
 * the "Multiplier" times the standard deviation). If the intensity
 * variations across a segment were gaussian, a "Multiplier" setting
 * of 2.5 would define a confidence interval wide enough to capture
 * 99% of samples in the segment.
 *
 * After this initial segmentation is calculated, the mean and
 * variance are re-calculated. All the pixels in the previous
 * segmentation are used to calculate the mean the standard deviation
 * (as opposed to using the pixels in the neighborhood of the seed
 * point).  The segmentation is then recalculated using these refined
 * estimates for the mean and variance of the pixel values.  This
 * process is repeated for the specified number of iterations.
 * Setting the "NumberOfIterations" to zero stops the algorithm
 * after the initial segmentation from the seed point.
 *
 * NOTE: the lower and upper threshold are restricted to lie within the
 * valid numeric limits of the input data pixel type. Also, the limits
 * may be adjusted to contain the seed point's intensity.
 * \ingroup RegionGrowingSegmentation
 * \ingroup ITKRegionGrowing
 *
 * \sphinx
 * \sphinxexample{Segmentation/RegionGrowing/SegmentPixelsWithSimilarStats,Segment Pixels With Similar Statistics}
 * \endsphinx
 */
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT ConfidenceConnectedImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ConfidenceConnectedImageFilter);

  /** Standard class type aliases. */
  using Self = ConfidenceConnectedImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ConfidenceConnectedImageFilter);

  using InputImageType = TInputImage;
  using InputImagePointer = typename InputImageType::Pointer;
  using InputImageRegionType = typename InputImageType::RegionType;
  using InputImagePixelType = typename InputImageType::PixelType;
  using IndexType = typename InputImageType::IndexType;
  using SizeType = typename InputImageType::SizeType;

  using OutputImageType = TOutputImage;
  using OutputImagePointer = typename OutputImageType::Pointer;
  using OutputImageRegionType = typename OutputImageType::RegionType;
  using OutputImagePixelType = typename OutputImageType::PixelType;

  using SeedsContainerType = std::vector<IndexType>;

  using InputRealType = typename NumericTraits<InputImagePixelType>::RealType;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Set seed point. This method is deprecated, please use AddSeed() */
  void
  SetSeed(const IndexType & seed);

  /** Clear all the seeds. */
  void
  ClearSeeds();

  /** Add seed point. */
  void
  AddSeed(const IndexType & seed);

  /** Set/Get the multiplier to define the confidence interval.  Multiplier
   * can be anything greater than zero. A typical value is 2.5 */
  itkSetMacro(Multiplier, double);
  itkGetConstMacro(Multiplier, double);

  /** Set/Get the number of iterations */
  itkSetMacro(NumberOfIterations, unsigned int);
  itkGetConstMacro(NumberOfIterations, unsigned int);

  /** Set/Get value to replace thresholded pixels */
  itkSetMacro(ReplaceValue, OutputImagePixelType);
  itkGetConstMacro(ReplaceValue, OutputImagePixelType);

  /** Get/Set the radius of the neighborhood over which the
      statistics are evaluated */
  itkSetMacro(InitialNeighborhoodRadius, unsigned int);
  itkGetConstReferenceMacro(InitialNeighborhoodRadius, unsigned int);

  /** Method to get access to the mean of the pixels accepted in the output
   * region.  This method should only be invoked after the filter has been
   * executed using the Update() method. */
  itkGetConstReferenceMacro(Mean, InputRealType);

  /** Method to get access to the variance of the pixels accepted in the output
   * region.  This method should only be invoked after the filter has been
   * executed using the Update() method. */
  itkGetConstReferenceMacro(Variance, InputRealType);

  /** Method to access seed container. */
  virtual const SeedsContainerType &
  GetSeeds() const;

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<InputImagePixelType>));
  itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<OutputImagePixelType>));
  // End concept checking
#endif

protected:
  ConfidenceConnectedImageFilter();
  ~ConfidenceConnectedImageFilter() override = default;

  // Override since the filter needs all the data for the algorithm
  void
  GenerateInputRequestedRegion() override;

  // Override since the filter produces the entire dataset
  void
  EnlargeOutputRequestedRegion(DataObject * output) override;

  void
  GenerateData() override;

private:
  SeedsContainerType   m_Seeds{};
  double               m_Multiplier{};
  unsigned int         m_NumberOfIterations{};
  OutputImagePixelType m_ReplaceValue{};
  unsigned int         m_InitialNeighborhoodRadius{};
  InputRealType        m_Mean{};
  InputRealType        m_Variance{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkConfidenceConnectedImageFilter.hxx"
#endif

#endif