1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <fstream>
#include "itkConfidenceConnectedImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkTextOutput.h"
#include "itkSimpleFilterWatcher.h"
#include "itkTestingMacros.h"
int
itkConfidenceConnectedImageFilterTest(int argc, char * argv[])
{
// Comment the following if you want to use the itk text output window
itk::OutputWindow::SetInstance(itk::TextOutput::New());
if (argc < 5)
{
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv) << " InputImage BaselineImage seed_x seed_y\n";
return EXIT_FAILURE;
}
using PixelType = unsigned char;
using myImage = itk::Image<PixelType, 2>;
itk::ImageFileReader<myImage>::Pointer input = itk::ImageFileReader<myImage>::New();
input->SetFileName(argv[1]);
// Create a filter
using FilterType = itk::ConfidenceConnectedImageFilter<myImage, myImage>;
auto filter = FilterType::New();
itk::SimpleFilterWatcher filterWatch(filter);
filter->SetInput(input->GetOutput());
filter->SetInitialNeighborhoodRadius(3); // measured in pixels
FilterType::IndexType seed;
seed[0] = std::stoi(argv[3]);
seed[1] = std::stoi(argv[4]);
// FilterType::IndexType seed; seed[0] = 56; seed[1] = 90;
// FilterType::IndexType seed; seed[0] = 96; seed[1] = 214;
filter->SetSeed(seed);
filter->SetMultiplier(2.5);
filter->SetReplaceValue(255);
filter->SetNumberOfIterations(10);
std::cout << "Filter Seeds";
for (const auto & oneSeed : filter->GetSeeds())
{
std::cout << ' ' << oneSeed;
}
std::cout << std::endl;
ITK_TRY_EXPECT_NO_EXCEPTION(input->Update());
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
// Test the GetMacros
double doubleMultiplier = filter->GetMultiplier();
std::cout << "filter->GetMultiplier(): " << doubleMultiplier << std::endl;
unsigned int uintNumberOfIterations = filter->GetNumberOfIterations();
std::cout << "filter->GetNumberOfIterations(): " << uintNumberOfIterations << std::endl;
PixelType pixelReplaceValue = filter->GetReplaceValue();
std::cout << "filter->GetReplaceValue(): " << static_cast<itk::NumericTraits<PixelType>::PrintType>(pixelReplaceValue)
<< std::endl;
const unsigned int cuintInitialNeighborhoodRadius = filter->GetInitialNeighborhoodRadius();
std::cout << "filter->GetInitialNeighborhoodRadius(): " << cuintInitialNeighborhoodRadius << std::endl;
const double mean = filter->GetMean();
std::cout << "filter->GetMean(): " << mean << std::endl;
const double variance = filter->GetVariance();
std::cout << "filter->GetVariance(): " << variance << std::endl;
// Generate test image
itk::ImageFileWriter<myImage>::Pointer writer;
writer = itk::ImageFileWriter<myImage>::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();
// Exercise AddSeed() method
filter->AddSeed(seed);
return EXIT_SUCCESS;
}
|