File: test_xarray.py

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (145 lines) | stat: -rw-r--r-- 5,543 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# ==========================================================================
#
#   Copyright NumFOCUS
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#          https://www.apache.org/licenses/LICENSE-2.0.txt
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#
# ==========================================================================*/

# also test the import callback feature

import sys
import os
import numpy as np
import pathlib

import itk

filename = sys.argv[1]

# xarray conversion
try:
    import xarray as xr

    print("Testing xarray conversion")

    image = itk.imread(filename)
    image.SetSpacing((0.1, 0.2))
    image.SetOrigin((30.0, 44.0))
    theta = np.radians(30)
    cosine = np.cos(theta)
    sine = np.sin(theta)
    rotation = np.array(((cosine, -sine), (sine, cosine)))
    image.SetDirection(rotation)
    image["MyMeta"] = 4.0

    data_array = itk.xarray_from_image(image)
    # Default name
    assert data_array.name == "image"
    image.SetObjectName("test_image")
    data_array = itk.xarray_from_image(image)
    assert data_array.name == "test_image"
    assert data_array.dims[0] == "y"
    assert data_array.dims[1] == "x"
    assert data_array.dims[2] == "c"
    assert np.array_equal(data_array.values, itk.array_from_image(image))
    assert len(data_array.coords["x"]) == 256
    assert len(data_array.coords["y"]) == 256
    assert len(data_array.coords["c"]) == 3
    assert data_array.coords["x"][0] == 30.0
    assert data_array.coords["x"][1] == 30.1
    assert data_array.coords["y"][0] == 44.0
    assert data_array.coords["y"][1] == 44.2
    assert data_array.coords["c"][0] == 0
    assert data_array.coords["c"][1] == 1
    assert data_array.attrs["direction"][0, 0] == cosine
    assert data_array.attrs["direction"][0, 1] == sine
    assert data_array.attrs["direction"][1, 0] == -sine
    assert data_array.attrs["direction"][1, 1] == cosine
    assert data_array.attrs["MyMeta"] == 4.0

    round_trip = itk.image_from_xarray(data_array)
    assert round_trip.GetObjectName() == "test_image"
    assert np.array_equal(itk.array_from_image(round_trip), itk.array_from_image(image))
    spacing = round_trip.GetSpacing()
    assert np.isclose(spacing[0], 0.1)
    assert np.isclose(spacing[1], 0.2)
    origin = round_trip.GetOrigin()
    assert np.isclose(origin[0], 30.0)
    assert np.isclose(origin[1], 44.0)
    direction = round_trip.GetDirection()
    assert np.isclose(direction(0, 0), cosine)
    assert np.isclose(direction(0, 1), -sine)
    assert np.isclose(direction(1, 0), sine)
    assert np.isclose(direction(1, 1), cosine)
    assert round_trip["MyMeta"] == 4.0

    wrong_order = data_array.swap_dims({"y": "z"})
    try:
        round_trip = itk.image_from_xarray(wrong_order)
        assert False
    except ValueError:
        pass

    # Check empty array
    empty_array = np.array([], dtype=np.uint8)
    empty_array.shape = (0, 0, 0)
    empty_image = itk.image_from_array(empty_array)
    empty_da = itk.xarray_from_image(empty_image)
    empty_image_round = itk.image_from_xarray(empty_da)

    # Check order
    arr = np.random.randint(0, 255, size=(4, 5, 6), dtype=np.uint8)
    data_array = xr.DataArray(arr, dims=["z", "y", "x"])
    image = itk.image_from_xarray(data_array)
    assert np.allclose(arr, itk.array_view_from_image(image))
    assert np.allclose(arr.shape, itk.array_view_from_image(image).shape)

    data_array = xr.DataArray(arr, dims=["x", "y", "z"])
    image = itk.image_from_xarray(data_array)
    assert np.allclose(arr.transpose(), itk.array_view_from_image(image))
    assert np.allclose(arr.shape[::-1], itk.array_view_from_image(image).shape)

    data_array = xr.DataArray(arr, dims=["y", "x", "c"])
    image = itk.image_from_xarray(data_array)
    assert np.allclose(arr, itk.array_view_from_image(image))
    assert np.allclose(arr.shape, itk.array_view_from_image(image).shape)

    data_array = xr.DataArray(arr, dims=["c", "x", "y"])
    image = itk.image_from_xarray(data_array)
    assert np.allclose(arr.transpose(), itk.array_view_from_image(image))
    assert np.allclose(arr.shape[::-1], itk.array_view_from_image(image).shape)

    # Test in-place "view" where xarray data is valid only as long as ITK image
    data_array = itk.xarray_from_image(image, view=True)
    assert data_array.name == image.GetObjectName()
    # verify we can run a computation on xarray data
    assert 0 <= data_array.min().compute() <= 255

    data_array = xr.DataArray(arr, dims=["q", "x", "y"])
    try:
        image = itk.image_from_xarray(data_array)
        assert False
    except ValueError:
        pass

    if "(<itkCType unsigned char>, 4)" in itk.Image.GetTypesAsList():
        arr = np.random.randint(0, 255, size=(4, 5, 6, 3), dtype=np.uint8)
        data_array = xr.DataArray(arr, dims=["t", "z", "y", "x"])
        image = itk.image_from_xarray(data_array)
        assert np.allclose(arr, itk.array_view_from_image(image))
        assert np.allclose(arr.shape, itk.array_view_from_image(image).shape)

except ImportError:
    print("xarray not imported. Skipping xarray conversion tests")
    pass