File: itkAnnulusOperator.hxx

package info (click to toggle)
insighttoolkit5 5.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,404 kB
  • sloc: cpp: 783,697; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (192 lines) | stat: -rw-r--r-- 5,407 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkAnnulusOperator_hxx
#define itkAnnulusOperator_hxx

#include "itkMath.h"
#include "itkSphereSpatialFunction.h"

#include <memory> // For make_unique.

namespace itk
{
/** Create the operator */
template <typename TPixel, unsigned int TDimension, typename TAllocator>
void
AnnulusOperator<TPixel, TDimension, TAllocator>::CreateOperator()
{
  CoefficientVector coefficients;

  coefficients = this->GenerateCoefficients();

  this->Fill(coefficients);
}

/** This function fills the coefficients into the corresponding
 *  neighborhood. */
template <typename TPixel, unsigned int TDimension, typename TAllocator>
void
AnnulusOperator<TPixel, TDimension, TAllocator>::Fill(const CoefficientVector & coeff)
{
  const std::slice temp_slice(0, coeff.size(), 1);

  typename Self::SliceIteratorType data(this, temp_slice);

  auto it = coeff.begin();

  // Copy the coefficients into the neighborhood
  for (data = data.Begin(); data < data.End(); ++data, ++it)
  {
    *data = *it;
  }
}

template <typename TPixel, unsigned int TDimension, typename TAllocator>
auto
AnnulusOperator<TPixel, TDimension, TAllocator>::GenerateCoefficients() -> CoefficientVector
{
  // Determine the initial kernel values...
  double interiorV, annulusV, exteriorV;

  if (m_Normalize)
  {
    double bright = (m_BrightCenter ? 1.0 : -1.0);

    // Initial values for a normalized kernel
    interiorV = bright;
    annulusV = -1.0 * bright;
    exteriorV = 0.0;
  }
  else
  {
    // values for a specified kernel
    interiorV = m_InteriorValue;
    annulusV = m_AnnulusValue;
    exteriorV = m_ExteriorValue;
  }

  // Compute the size of the kernel in pixels
  SizeType     r;
  unsigned int i, j;
  double       outerRadius = m_InnerRadius + m_Thickness;
  for (i = 0; i < TDimension; ++i)
  {
    r[i] = Math::Ceil<SizeValueType>(outerRadius / m_Spacing[i]);
  }
  this->SetRadius(r);

  // Use a couple of sphere spatial functions...
  using SphereType = SphereSpatialFunction<TDimension>;
  auto innerS = SphereType::New();
  auto outerS = SphereType::New();

  innerS->SetRadius(m_InnerRadius);
  outerS->SetRadius(m_InnerRadius + m_Thickness);

  // Walk the neighborhood (this) and evaluate the sphere spatial
  // functions
  double       sumNotExterior = 0.0;
  double       sumNotExteriorSq = 0.0;
  unsigned int countNotExterior = 0;

  const typename SizeType::SizeValueType w = this->Size();

  const auto                     outside = std::make_unique<bool[]>(w);
  CoefficientVector              coeffP(w);
  OffsetType                     offset;
  typename SphereType::InputType point;

  for (i = 0; i < w; ++i)
  {
    // get the offset from the center pixel
    offset = this->GetOffset(i);

    // convert to a position
    for (j = 0; j < TDimension; ++j)
    {
      point[j] = m_Spacing[j] * offset[j];
    }

    // evaluate the spheres
    const bool inInner = innerS->Evaluate(point);
    const bool inOuter = outerS->Evaluate(point);

    // set the coefficients
    if (!inOuter)
    {
      // outside annulus
      coeffP[i] = exteriorV;
      outside[i] = true;
    }
    else if (!inInner)
    {
      // inside the outer circle but outside the inner circle
      coeffP[i] = annulusV;
      sumNotExterior += annulusV;
      sumNotExteriorSq += (annulusV * annulusV);
      ++countNotExterior;
      outside[i] = false;
    }
    else
    {
      // inside inner circle
      coeffP[i] = interiorV;
      sumNotExterior += interiorV;
      sumNotExteriorSq += (interiorV * interiorV);
      ++countNotExterior;
      outside[i] = false;
    }
  }

  // Normalize the kernel if necessary
  if (m_Normalize)
  {
    // Calculate the mean and standard deviation of kernel values NOT
    // the exterior
    auto   num = static_cast<double>(countNotExterior);
    double mean = sumNotExterior / num;
    double var = (sumNotExteriorSq - (sumNotExterior * sumNotExterior / num)) / (num - 1.0);
    double std = std::sqrt(var);

    // convert std to a scaling factor k such that
    //
    //        || (coeffP - mean) / k || = 1.0
    //
    double k = std * std::sqrt(num - 1.0);

    // Run through the kernel again, shifting and normalizing the
    // elements that are not exterior to the annulus.  This forces the
    // kernel to have mean zero and norm 1 AND forces the region
    // outside the annulus to have no influence.
    for (i = 0; i < w; ++i)
    {
      // normalize the coefficient if it is inside the outer circle
      // (exterior to outer circle is already zero)
      if (!outside[i])
      {
        coeffP[i] = (coeffP[i] - mean) / k;
      }
    }
  }

  return coeffP;
}

} // namespace itk

#endif