1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkConicShellInteriorExteriorSpatialFunction_hxx
#define itkConicShellInteriorExteriorSpatialFunction_hxx
namespace itk
{
template <unsigned int VDimension, typename TInput>
void
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>::SetOriginGradient(GradientType grad)
{
m_OriginGradient = grad;
// Normalize the origin gradient
m_OriginGradient.GetVnlVector().normalize();
}
template <unsigned int VDimension, typename TInput>
auto
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>::Evaluate(const InputType & position) const -> OutputType
{
using VectorType = Vector<double, VDimension>;
// Compute the vector from the origin to the point being tested
VectorType vecOriginToTest = position - m_Origin;
// Compute the length of this vector
// double vecDistance = vecOriginToTest.GetVnlVector().magnitude();
double vecDistance = vecOriginToTest.GetNorm();
// Check to see if this an allowed distance
if (!((vecDistance > m_DistanceMin) && (vecDistance < m_DistanceMax)))
{
return 0; // not inside the conic shell
}
// Normalize it
// vecOriginToTest.GetVnlVector().normalize();
vecOriginToTest.Normalize();
// Create a temp vector to get around const problems
GradientType originGradient = m_OriginGradient;
// Now compute the dot product
double dotprod = originGradient * vecOriginToTest;
if (m_Polarity == 1)
{
dotprod = dotprod * -1;
}
// Check if it meets the angle criterion
OutputType result;
if (dotprod > (1 - m_Epsilon))
{
result = 1; // it's inside the shell
}
else
{
result = 0; // it's not inside the shell
}
return result;
}
template <unsigned int VDimension, typename TInput>
void
ConicShellInteriorExteriorSpatialFunction<VDimension, TInput>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
unsigned int i;
os << indent << "Origin: [";
for (i = 0; i < VDimension - 1; ++i)
{
os << m_Origin[i] << ", ";
}
os << ']' << std::endl;
os << indent << "Gradient at origin: [";
for (i = 0; i < VDimension - 1; ++i)
{
os << m_OriginGradient[i] << ", ";
}
os << ']' << std::endl;
os << indent << "DistanceMin: " << m_DistanceMin << std::endl;
os << indent << "DistanceMax: " << m_DistanceMax << std::endl;
os << indent << "Epsilon: " << m_Epsilon << std::endl;
os << indent << "Polarity: " << m_Polarity << std::endl;
}
} // end namespace itk
#endif
|