1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkImageKernelOperator_hxx
#define itkImageKernelOperator_hxx
#include "itkImageBufferRange.h"
#include "itkImageRegionConstIterator.h"
/*
*
* This code was contributed in the Insight Journal paper:
*
* "Image Kernel Convolution"
* by Tustison N., Gee J.
* https://www.insight-journal.org/browse/publication/208
*
*/
namespace itk
{
template <typename TPixel, unsigned int VDimension, typename TAllocator>
void
ImageKernelOperator<TPixel, VDimension, TAllocator>::SetImageKernel(const ImageType * kernel)
{
m_ImageKernel = kernel;
}
template <typename TPixel, unsigned int VDimension, typename TAllocator>
auto
ImageKernelOperator<TPixel, VDimension, TAllocator>::GetImageKernel() const -> const ImageType *
{
return m_ImageKernel;
}
template <typename TPixel, unsigned int VDimension, typename TAllocator>
auto
ImageKernelOperator<TPixel, VDimension, TAllocator>::GenerateCoefficients() -> CoefficientVector
{
// Check that the input image is fully buffered.
if (m_ImageKernel->GetBufferedRegion() != m_ImageKernel->GetLargestPossibleRegion())
{
itkExceptionMacro("ImageKernel is not fully buffered. "
<< std::endl
<< "Buffered region: " << m_ImageKernel->GetBufferedRegion() << std::endl
<< "Largest possible region: " << m_ImageKernel->GetLargestPossibleRegion() << std::endl
<< "You should call UpdateLargestPossibleRegion() on "
<< "the filter whose output is passed to "
<< "SetImageKernel().");
}
// Check that the size of the kernel is odd in all dimensions.
for (unsigned int i = 0; i < VDimension; ++i)
{
if (m_ImageKernel->GetLargestPossibleRegion().GetSize()[i] % 2 == 0)
{
itkExceptionMacro("ImageKernelOperator requires an input image "
<< "whose size is odd in all dimensions. The provided "
<< "image has size " << m_ImageKernel->GetLargestPossibleRegion().GetSize());
}
}
const auto imageBufferRange = MakeImageBufferRange(m_ImageKernel.GetPointer());
return CoefficientVector(imageBufferRange.cbegin(), imageBufferRange.cend());
}
template <typename TPixel, unsigned int VDimension, typename TAllocator>
void
ImageKernelOperator<TPixel, VDimension, TAllocator>::Fill(const CoefficientVector & coeff)
{
// Initialize all coefficients to zero
this->InitializeToZero();
typename CoefficientVector::const_iterator it;
const std::slice temp_slice(0, coeff.size(), 1);
it = coeff.begin();
typename Superclass::SliceIteratorType data(this, temp_slice);
// Copy the coefficients into the neighborhood, truncating them if there
// are too many.
for (data = data.Begin(); data < data.End(); ++data, ++it)
{
*data = static_cast<TPixel>(*it);
}
}
} // end namespace itk
#endif
|