1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkNumericTraitsStdVector_h
#define itkNumericTraitsStdVector_h
#include "itkMath.h"
#include <vector>
// This work is part of the National Alliance for Medical Image Computing
// (NAMIC), funded by the National Institutes of Health through the NIH Roadmap
// for Medical Research, Grant U54 EB005149.
namespace itk
{
/** \class NumericTraits
* \brief Define numeric traits for std::vector.
* \tparam T Component type of std::vector
*
* We provide here a generic implementation based on creating types of
* std::vector whose components are the types of the NumericTraits from
* the original std::vector components. This implementation require
* support for partial specializations, since it is based on the
* concept that:
* NumericTraits<std::vector< T > > is defined piecewise by
* std::vector< NumericTraits< T > >
*
* \note The Zero(), One(), min() and max() methods here take
* references to a pixel as input. This is due to the fact that the
* length of the std::vector is not known until
* run-time. Since the most common use of Zero and One is for
* comparison purposes or initialization of sums etc, this might just
* as easily be re-written with a pixel passed in as a reference and
* the length is inferred from this pixel.
*
* \sa NumericTraits
* \ingroup DataRepresentation
* \ingroup ITKCommon
*/
template <typename T>
class NumericTraits<std::vector<T>>
{
public:
using ElementAbsType = typename NumericTraits<T>::AbsType;
using ElementAccumulateType = typename NumericTraits<T>::AccumulateType;
using ElementFloatType = typename NumericTraits<T>::FloatType;
using ElementPrintType = typename NumericTraits<T>::PrintType;
using ElementRealType = typename NumericTraits<T>::RealType;
/** Return the type of the native component type. */
using ValueType = T;
using Self = std::vector<T>;
/** Unsigned component type */
using AbsType = std::vector<ElementAbsType>;
/** Accumulation of addition and multiplication. */
using AccumulateType = std::vector<ElementAccumulateType>;
/** Typedef for operations that use floating point instead of real precision
*/
using FloatType = std::vector<ElementFloatType>;
// TODO: this won't really print well, at least not without defining an operator
// to push to a stream.
/** Return the type that can be printed. */
using PrintType = std::vector<ElementPrintType>;
/** Type for real-valued scalar operations. */
using RealType = std::vector<ElementRealType>;
/** Type for real-valued scalar operations. */
using ScalarRealType = ElementRealType;
/** Measurement vector type */
using MeasurementVectorType = Self;
/** Component wise defined element
*
* \note minimum value for floating pointer types is defined as
* minimum positive normalize value.
*/
static const Self
max(const Self & a)
{
Self b(a.Size(), NumericTraits<T>::max());
return b;
}
static const Self
min(const Self & a)
{
Self b(a.Size(), NumericTraits<T>::min());
return b;
}
static const Self
ZeroValue(const Self & a)
{
Self b(a.Size(), T{});
return b;
}
static const Self
OneValue(const Self & a)
{
Self b(a.Size(), NumericTraits<T>::OneValue());
return b;
}
static const Self
NonpositiveMin(const Self & a)
{
Self b(a.Size(), NumericTraits<T>::NonpositiveMin());
return b;
}
static constexpr bool IsSigned = std::is_signed_v<ValueType>;
static constexpr bool IsInteger = std::is_integral_v<ValueType>;
static constexpr bool IsComplex = NumericTraits<ValueType>::IsComplex;
/** Resize the input vector to the specified size */
static void
SetLength(std::vector<T> & m, const unsigned int s)
{
// since std::vector often holds types that have no NumericTraits::ZeroValue(),
// allow resize() to call the type's default constructor
m.clear();
m.resize(s);
}
/** Return the size of the vector. */
static unsigned int
GetLength(const std::vector<T> & m)
{
return itk::Math::CastWithRangeCheck<unsigned int>(m.size());
}
static void
AssignToArray(const Self & v, MeasurementVectorType & mv)
{
mv = v;
}
template <typename TArray>
static void
AssignToArray(const Self & v, TArray & mv)
{
for (unsigned int i = 0; i < GetLength(v); ++i)
{
mv[i] = v[i];
}
}
};
} // end namespace itk
#endif // itkNumericTraitsStdVector_h
|