1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// First include the header file to be tested:
#include "itkConnectedImageNeighborhoodShape.h"
#include "itkConstShapedNeighborhoodIterator.h"
#include "itkImage.h"
#include "itkImageNeighborhoodOffsets.h"
#include "itkLexicographicCompare.h"
#include "itkOffset.h"
#include "itkSize.h"
#include <algorithm> // For is_sorted and lexicographical_compare.
#include <climits> // For INT_MAX and SIZE_MAX.
#include <vector>
#include <gtest/gtest.h>
namespace
{
template <unsigned int VImageDimension,
size_t VMaximumCityblockDistance,
bool VIncludeCenterPixel,
size_t VExpectedNumberOfOffsets>
void
Assert_GetNumberOfOffsets_returns_expected_number()
{
using ShapeType = itk::ConnectedImageNeighborhoodShape<VImageDimension>;
// Test GetNumberOfOffsets() on a 'constexpr shape', at compile-time:
constexpr ShapeType constexprShape(VMaximumCityblockDistance, VIncludeCenterPixel);
static_assert(constexprShape.GetNumberOfOffsets() == VExpectedNumberOfOffsets,
"Checked ConnectedImageNeighborhoodShape::GetNumberOfOffsets().");
// Test GetNumberOfOffsets() on a non-const shape, at run-time:
ShapeType nonConstShape = constexprShape;
ASSERT_EQ(nonConstShape.GetNumberOfOffsets(), VExpectedNumberOfOffsets);
}
template <unsigned int VImageDimension,
size_t VMaximumCityblockDistance,
size_t VExpectedNumberOfOffsetsExcludingCenterPixel>
void
Assert_GetNumberOfOffsets_returns_expected_number()
{
// Test GetNumberOfOffsets() for both VIncludeCenterPixel = false and
// VIncludeCenterPixel = true:
Assert_GetNumberOfOffsets_returns_expected_number<VImageDimension,
VMaximumCityblockDistance,
false,
VExpectedNumberOfOffsetsExcludingCenterPixel>();
Assert_GetNumberOfOffsets_returns_expected_number<VImageDimension,
VMaximumCityblockDistance,
true,
VExpectedNumberOfOffsetsExcludingCenterPixel + 1>();
}
// Asserts that GenerateImageNeighborhoodOffsets(shape) returns the expected
// result for a shape with the specified ImageDimension and MaximumCityblockDistance,
template <unsigned int VImageDimension, size_t VMaximumCityblockDistance>
void
Assert_GenerateImageNeighborhoodOffsets_returns_expected_offsets_excluding_center_pixel(
const std::vector<itk::Offset<VImageDimension>> & expectedOffsets)
{
using ShapeType = itk::ConnectedImageNeighborhoodShape<VImageDimension>;
const bool includeCenterPixel = false;
const ShapeType shape{ VMaximumCityblockDistance, includeCenterPixel };
ASSERT_EQ(GenerateImageNeighborhoodOffsets(shape), expectedOffsets);
}
template <unsigned int VImageDimension>
void
Assert_The_middle_offset_is_all_zero_when_center_pixel_is_included()
{
using ShapeType = itk::ConnectedImageNeighborhoodShape<VImageDimension>;
using OffsetType = itk::Offset<VImageDimension>;
const bool includeCenterPixel = true;
const OffsetType allZeroOffset{ {} };
for (unsigned int maximumCityblockDistance = 0; maximumCityblockDistance < VImageDimension;
++maximumCityblockDistance)
{
const ShapeType shape{ maximumCityblockDistance, includeCenterPixel };
const size_t numberOfOffsets = shape.GetNumberOfOffsets();
const std::vector<OffsetType> offsets = GenerateImageNeighborhoodOffsets(shape);
ASSERT_FALSE(offsets.empty());
ASSERT_TRUE((offsets.size() % 2) == 1);
const OffsetType middleOffset = offsets[(numberOfOffsets - 1) / 2];
ASSERT_EQ(middleOffset, allZeroOffset);
}
}
template <unsigned int VImageDimension>
void
Assert_Offsets_are_unique_and_colexicographically_ordered()
{
using ShapeType = itk::ConnectedImageNeighborhoodShape<VImageDimension>;
using OffsetType = itk::Offset<VImageDimension>;
for (unsigned int maximumCityblockDistance = 0; maximumCityblockDistance < VImageDimension;
++maximumCityblockDistance)
{
for (bool includeCenterPixel : { false, true })
{
const ShapeType shape{ maximumCityblockDistance, includeCenterPixel };
const std::vector<OffsetType> offsets = GenerateImageNeighborhoodOffsets(shape);
const auto beginOfOffsets = offsets.begin();
const auto endOfOffsets = offsets.end();
ASSERT_TRUE(std::is_sorted(beginOfOffsets, endOfOffsets, itk::Functor::CoLexicographicCompare{}));
// adjacent_find allows checking that each offset is unique, as we can
// assume at this point that the offsets are sorted.
ASSERT_EQ(std::adjacent_find(beginOfOffsets, endOfOffsets), endOfOffsets);
}
}
}
} // namespace
TEST(ConnectedImageNeighborhoodShape, GetNumberOfOffsetsReturnsExpectedValue)
{
// 0-dimensional:
Assert_GetNumberOfOffsets_returns_expected_number<0, 0, 0>();
Assert_GetNumberOfOffsets_returns_expected_number<0, SIZE_MAX, 0>();
// 1-dimensional:
Assert_GetNumberOfOffsets_returns_expected_number<1, 0, 0>();
Assert_GetNumberOfOffsets_returns_expected_number<1, 1, 2>();
Assert_GetNumberOfOffsets_returns_expected_number<1, SIZE_MAX, 2>();
// 2-dimensional (0-connected, 4-connected, 8-connected):
Assert_GetNumberOfOffsets_returns_expected_number<2, 0, 0>();
Assert_GetNumberOfOffsets_returns_expected_number<2, 1, 4>();
Assert_GetNumberOfOffsets_returns_expected_number<2, 2, 8>();
Assert_GetNumberOfOffsets_returns_expected_number<2, SIZE_MAX, 8>();
// 3-dimensional (0-connected, 6-connected, 18-connected, 26-connected):
Assert_GetNumberOfOffsets_returns_expected_number<3, 0, 0>();
Assert_GetNumberOfOffsets_returns_expected_number<3, 1, 6>();
Assert_GetNumberOfOffsets_returns_expected_number<3, 2, 18>();
Assert_GetNumberOfOffsets_returns_expected_number<3, 3, 26>();
Assert_GetNumberOfOffsets_returns_expected_number<3, SIZE_MAX, 26>();
// INT_MAX-dimensional:
Assert_GetNumberOfOffsets_returns_expected_number<INT_MAX, 0, 0>();
Assert_GetNumberOfOffsets_returns_expected_number<INT_MAX, 1, 2U * INT_MAX>();
}
TEST(ConnectedImageNeighborhoodShape, GenerateImageNeighborhoodOffsetsReturnsExpectedOffsets)
{
Assert_GenerateImageNeighborhoodOffsets_returns_expected_offsets_excluding_center_pixel<1, 1>(
{ { { -1 } }, { { 1 } } });
Assert_GenerateImageNeighborhoodOffsets_returns_expected_offsets_excluding_center_pixel<2, 1>(
{ { { 0, -1 } }, { { -1, 0 } }, { { 1, 0 } }, { { 0, 1 } } });
Assert_GenerateImageNeighborhoodOffsets_returns_expected_offsets_excluding_center_pixel<2, 2>({ { { -1, -1 } },
{ { 0, -1 } },
{ { 1, -1 } },
{ { -1, 0 } },
{ { 1, 0 } },
{ { -1, 1 } },
{ { 0, 1 } },
{ { 1, 1 } } });
Assert_GenerateImageNeighborhoodOffsets_returns_expected_offsets_excluding_center_pixel<3, 1>(
{ { { 0, 0, -1 } }, { { 0, -1, 0 } }, { { -1, 0, 0 } }, { { 1, 0, 0 } }, { { 0, 1, 0 } }, { { 0, 0, 1 } } });
Assert_GenerateImageNeighborhoodOffsets_returns_expected_offsets_excluding_center_pixel<3, 2>({ { { 0, -1, -1 } },
{ { -1, 0, -1 } },
{ { 0, 0, -1 } },
{ { 1, 0, -1 } },
{ { 0, 1, -1 } },
{ { -1, -1, 0 } },
{ { 0, -1, 0 } },
{ { 1, -1, 0 } },
{ { -1, 0, 0 } },
{ { 1, 0, 0 } },
{ { -1, 1, 0 } },
{ { 0, 1, 0 } },
{ { 1, 1, 0 } },
{ { 0, -1, 1 } },
{ { -1, 0, 1 } },
{ { 0, 0, 1 } },
{ { 1, 0, 1 } },
{ { 0, 1, 1 } } });
Assert_GenerateImageNeighborhoodOffsets_returns_expected_offsets_excluding_center_pixel<3, 3>(
{ { { -1, -1, -1 } }, { { 0, -1, -1 } }, { { 1, -1, -1 } }, { { -1, 0, -1 } }, { { 0, 0, -1 } }, { { 1, 0, -1 } },
{ { -1, 1, -1 } }, { { 0, 1, -1 } }, { { 1, 1, -1 } }, { { -1, -1, 0 } }, { { 0, -1, 0 } }, { { 1, -1, 0 } },
{ { -1, 0, 0 } }, { { 1, 0, 0 } }, { { -1, 1, 0 } }, { { 0, 1, 0 } }, { { 1, 1, 0 } }, { { -1, -1, 1 } },
{ { 0, -1, 1 } }, { { 1, -1, 1 } }, { { -1, 0, 1 } }, { { 0, 0, 1 } }, { { 1, 0, 1 } }, { { -1, 1, 1 } },
{ { 0, 1, 1 } }, { { 1, 1, 1 } } });
}
TEST(ConnectedImageNeighborhoodShape, TheMiddleOffsetIsAllZeroWhenCenterPixelIsIncluded)
{
Assert_The_middle_offset_is_all_zero_when_center_pixel_is_included<1>();
Assert_The_middle_offset_is_all_zero_when_center_pixel_is_included<2>();
Assert_The_middle_offset_is_all_zero_when_center_pixel_is_included<3>();
}
TEST(ConnectedImageNeighborhoodShape, OffsetsAreUniqueAndColexicographicallyOrdered)
{
Assert_Offsets_are_unique_and_colexicographically_ordered<1>();
Assert_Offsets_are_unique_and_colexicographically_ordered<2>();
Assert_Offsets_are_unique_and_colexicographically_ordered<3>();
}
// Tests that the shape class supports a typical use case of itk::ConstShapedNeighborhoodIterator,
// allowing to set the active offsets directly by GenerateImageNeighborhoodOffsets(shape).
TEST(ConnectedImageNeighborhoodShape, SupportsConstShapedNeighborhoodIterator)
{
using ImageType = itk::Image<int>;
constexpr auto ImageDimension = ImageType::ImageDimension;
using SizeType = itk::Size<ImageDimension>;
using OffsetType = itk::Offset<ImageDimension>;
// Create a "dummy" image.
const auto image = ImageType::New();
SizeType imageSize;
imageSize.Fill(1);
image->SetRegions(imageSize);
image->AllocateInitialized();
// Create a radius, (just) large enough for all offsets activated below here.
SizeType radius;
radius.Fill(1);
itk::ConstShapedNeighborhoodIterator<ImageType> shapedNeighborhoodIterator{ radius,
image,
image->GetRequestedRegion() };
// Obvious initial expectation.
EXPECT_TRUE(shapedNeighborhoodIterator.GetActiveIndexList().empty());
// Activate offsets one by one (the "old-fashioned" way):
OffsetType offset = { {} };
for (auto & offsetValue : offset)
{
offsetValue = -1;
shapedNeighborhoodIterator.ActivateOffset(offset);
offsetValue = 1;
shapedNeighborhoodIterator.ActivateOffset(offset);
offsetValue = 0;
}
const auto activeIndexList = shapedNeighborhoodIterator.GetActiveIndexList();
// Obvious expectation after the previous ActivateOffset(offset) calls.
EXPECT_FALSE(activeIndexList.empty());
shapedNeighborhoodIterator.ClearActiveList();
// Obvious expectation after having called ClearActiveList().
EXPECT_TRUE(shapedNeighborhoodIterator.GetActiveIndexList().empty());
// Define a shape that should generate the same offsets as in the
// previous ActivateOffset(offset) calls.
constexpr size_t cityBlockDistance = 1;
constexpr bool includeCenterPixel = false;
shapedNeighborhoodIterator.ActivateOffsets(
itk::GenerateConnectedImageNeighborhoodShapeOffsets<ImageDimension, cityBlockDistance, includeCenterPixel>());
ASSERT_EQ(shapedNeighborhoodIterator.GetActiveIndexList(), activeIndexList);
}
|