1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkFFTConvolutionImageFilter.h"
#include "itkGaussianImageSource.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkParametricBlindLeastSquaresDeconvolutionImageFilter.h"
#include "itkTestingMacros.h"
// Define a version of the GaussianImageSource that has only the sigma
// parameters
namespace itk
{
template <typename TOutputImage>
class ExampleImageSource : public GaussianImageSource<TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ExampleImageSource);
/** Standard type alias. */
using Self = ExampleImageSource;
using Superclass = GaussianImageSource<TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Output image type alias */
using OutputImageType = TOutputImage;
using OutputImagePointer = typename OutputImageType::Pointer;
using OutputImagePixelType = typename OutputImageType::PixelType;
using PixelType = typename OutputImageType::PixelType;
using RegionType = typename OutputImageType::RegionType;
using SpacingType = typename OutputImageType::SpacingType;
using PointType = typename OutputImageType::PointType;
using DirectionType = typename OutputImageType::DirectionType;
using SizeType = typename OutputImageType::SizeType;
using SizeValueType = typename OutputImageType::SizeValueType;
using typename Superclass::ParametersValueType;
using typename Superclass::ParametersType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** ImageDimension constant */
static constexpr unsigned int OutputImageDimension = TOutputImage::ImageDimension;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ExampleImageSource);
/** Set the parameters for this source. Setting the parameters does
* not mark the image source as modified; subclasses should override
* this method to forward parameters through setters that call
* Modified(). */
void
SetParameters(const ParametersType & parameters) override
{
ParametersType gaussianParameters = this->Superclass::GetParameters();
for (unsigned int i = 0; i < OutputImageDimension; ++i)
{
gaussianParameters[i] = parameters[i];
}
this->Superclass::SetParameters(gaussianParameters);
}
/** Get the parameters for this source. */
ParametersType
GetParameters() const override
{
ParametersType gaussianParameters = this->Superclass::GetParameters();
ParametersType parameters(OutputImageDimension);
for (unsigned int i = 0; i < OutputImageDimension; ++i)
{
parameters[i] = gaussianParameters[i];
}
return parameters;
}
/** Get the number of parameters. */
unsigned int
GetNumberOfParameters() const override
{
return OutputImageDimension;
}
protected:
ExampleImageSource() = default;
~ExampleImageSource() override = default;
};
} // namespace itk
int
itkParametricBlindLeastSquaresDeconvolutionImageFilterTest(int argc, char * argv[])
{
if (argc < 6)
{
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv)
<< " <input image> <output image> <iterations> <alpha> <beta> [convolution image]" << std::endl;
return EXIT_FAILURE;
}
using PixelType = float;
constexpr unsigned int Dimension = 2;
using ImageType = itk::Image<PixelType, Dimension>;
using ReaderType = itk::ImageFileReader<ImageType>;
using WriterType = itk::ImageFileWriter<ImageType>;
auto inputReader = ReaderType::New();
inputReader->SetFileName(argv[1]);
inputReader->Update();
// Create a masked parametric image source so that we can optimize
// for the sigma parameters only.
using KernelSourceType = itk::ExampleImageSource<ImageType>;
auto kernelSource = KernelSourceType::New();
kernelSource->SetScale(1.0);
KernelSourceType::SizeType size = { { 32, 32 } };
kernelSource->SetSize(size);
KernelSourceType::PointType origin;
origin[0] = 0.0;
origin[1] = 0.0;
kernelSource->SetOrigin(origin);
KernelSourceType::SpacingType spacing;
spacing[0] = 1.0;
spacing[1] = 1.0;
kernelSource->SetSpacing(spacing);
KernelSourceType::ArrayType sigma;
sigma[0] = 2.0;
sigma[1] = 4.0;
kernelSource->SetSigma(sigma);
KernelSourceType::ArrayType mean;
mean[0] = 0.5 * (size[0] - 1) * spacing[0];
mean[1] = 0.5 * (size[1] - 1) * spacing[1];
kernelSource->SetMean(mean);
// Generate a convolution of the input image with a kernel computed
// from a parametric image source. We'll try to recover those
// parameters later.
using ConvolutionFilterType = itk::FFTConvolutionImageFilter<ImageType>;
auto convolutionFilter = ConvolutionFilterType::New();
convolutionFilter->SetInput(inputReader->GetOutput());
convolutionFilter->NormalizeOn();
convolutionFilter->SetKernelImage(kernelSource->GetOutput());
// Use the same SizeGreatestPrimeFactor across FFT backends to get
// consistent results.
convolutionFilter->SetSizeGreatestPrimeFactor(5);
// Create an instance of the deconvolution filter
using DeconvolutionFilterType = itk::ParametricBlindLeastSquaresDeconvolutionImageFilter<ImageType, KernelSourceType>;
auto deconvolutionFilter = DeconvolutionFilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(
deconvolutionFilter, ParametricBlindLeastSquaresDeconvolutionImageFilter, IterativeDeconvolutionImageFilter);
deconvolutionFilter->SetKernelSource(kernelSource);
ITK_TEST_SET_GET_VALUE(kernelSource, deconvolutionFilter->GetKernelSource());
deconvolutionFilter->SetSizeGreatestPrimeFactor(5);
// Change the sigma settings here to something different
KernelSourceType::ParametersType parameters(kernelSource->GetParameters());
parameters[0] = 3.0;
parameters[1] = 3.0;
kernelSource->SetParameters(parameters);
deconvolutionFilter->NormalizeOn();
double alpha = std::stod(argv[4]);
double beta = std::stod(argv[5]);
deconvolutionFilter->SetAlpha(alpha);
deconvolutionFilter->SetBeta(beta);
deconvolutionFilter->SetInput(convolutionFilter->GetOutput());
deconvolutionFilter->SetNumberOfIterations(std::stoi(argv[3]));
deconvolutionFilter->UpdateLargestPossibleRegion();
std::cout << "Kernel parameters: " << kernelSource->GetParameters() << std::endl;
try
{
auto writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(deconvolutionFilter->GetOutput());
writer->Update();
}
catch (const itk::ExceptionObject & e)
{
std::cerr << "Unexpected exception caught when writing deconvolution image: " << e << std::endl;
return EXIT_FAILURE;
}
KernelSourceType::ParametersValueType expectedSigmaX = 2.90243;
if (itk::Math::abs(kernelSource->GetParameters()[0] - expectedSigmaX) > 1e-5)
{
std::cerr << "Kernel parameter[0] should have been " << expectedSigmaX << ", was "
<< kernelSource->GetParameters()[0] << '.' << std::endl;
return EXIT_FAILURE;
}
KernelSourceType::ParametersValueType expectedSigmaY = 2.90597;
if (itk::Math::abs(kernelSource->GetParameters()[1] - expectedSigmaY) > 1e-5)
{
std::cerr << "Kernel parameter[1] should have been " << expectedSigmaY << ", was "
<< kernelSource->GetParameters()[0] << '.' << std::endl;
return EXIT_FAILURE;
}
// Optionally write the convolution image on which we're testing the
// deconvolution filter
if (argc >= 7)
{
try
{
auto writer = WriterType::New();
writer->SetFileName(argv[6]);
writer->SetInput(convolutionFilter->GetOutput());
writer->Update();
}
catch (const itk::ExceptionObject & e)
{
std::cerr << "Unexpected exception caught when writing convolution image: " << e << std::endl;
return EXIT_FAILURE;
}
}
// Exercise the setters/getters
ITK_TEST_SET_GET_VALUE(alpha, deconvolutionFilter->GetAlpha());
ITK_TEST_SET_GET_VALUE(beta, deconvolutionFilter->GetBeta());
return EXIT_SUCCESS;
}
|