File: itkParametricBlindLeastSquaresDeconvolutionImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,404 kB
  • sloc: cpp: 783,697; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (254 lines) | stat: -rw-r--r-- 8,688 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkFFTConvolutionImageFilter.h"
#include "itkGaussianImageSource.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkParametricBlindLeastSquaresDeconvolutionImageFilter.h"
#include "itkTestingMacros.h"

// Define a version of the GaussianImageSource that has only the sigma
// parameters
namespace itk
{
template <typename TOutputImage>
class ExampleImageSource : public GaussianImageSource<TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ExampleImageSource);

  /** Standard type alias. */
  using Self = ExampleImageSource;
  using Superclass = GaussianImageSource<TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Output image type alias */
  using OutputImageType = TOutputImage;
  using OutputImagePointer = typename OutputImageType::Pointer;
  using OutputImagePixelType = typename OutputImageType::PixelType;
  using PixelType = typename OutputImageType::PixelType;
  using RegionType = typename OutputImageType::RegionType;
  using SpacingType = typename OutputImageType::SpacingType;
  using PointType = typename OutputImageType::PointType;
  using DirectionType = typename OutputImageType::DirectionType;
  using SizeType = typename OutputImageType::SizeType;
  using SizeValueType = typename OutputImageType::SizeValueType;

  using typename Superclass::ParametersValueType;
  using typename Superclass::ParametersType;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** ImageDimension constant */
  static constexpr unsigned int OutputImageDimension = TOutputImage::ImageDimension;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ExampleImageSource);

  /** Set the parameters for this source. Setting the parameters does
   * not mark the image source as modified; subclasses should override
   * this method to forward parameters through setters that call
   * Modified(). */
  void
  SetParameters(const ParametersType & parameters) override
  {
    ParametersType gaussianParameters = this->Superclass::GetParameters();
    for (unsigned int i = 0; i < OutputImageDimension; ++i)
    {
      gaussianParameters[i] = parameters[i];
    }

    this->Superclass::SetParameters(gaussianParameters);
  }

  /** Get the parameters for this source. */
  ParametersType
  GetParameters() const override
  {
    ParametersType gaussianParameters = this->Superclass::GetParameters();
    ParametersType parameters(OutputImageDimension);
    for (unsigned int i = 0; i < OutputImageDimension; ++i)
    {
      parameters[i] = gaussianParameters[i];
    }

    return parameters;
  }

  /** Get the number of parameters. */
  unsigned int
  GetNumberOfParameters() const override
  {
    return OutputImageDimension;
  }

protected:
  ExampleImageSource() = default;
  ~ExampleImageSource() override = default;
};
} // namespace itk


int
itkParametricBlindLeastSquaresDeconvolutionImageFilterTest(int argc, char * argv[])
{
  if (argc < 6)
  {
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv)
              << " <input image> <output image> <iterations> <alpha> <beta> [convolution image]" << std::endl;
    return EXIT_FAILURE;
  }

  using PixelType = float;
  constexpr unsigned int Dimension = 2;
  using ImageType = itk::Image<PixelType, Dimension>;
  using ReaderType = itk::ImageFileReader<ImageType>;
  using WriterType = itk::ImageFileWriter<ImageType>;

  auto inputReader = ReaderType::New();
  inputReader->SetFileName(argv[1]);
  inputReader->Update();

  // Create a masked parametric image source so that we can optimize
  // for the sigma parameters only.
  using KernelSourceType = itk::ExampleImageSource<ImageType>;
  auto kernelSource = KernelSourceType::New();
  kernelSource->SetScale(1.0);

  KernelSourceType::SizeType size = { { 32, 32 } };
  kernelSource->SetSize(size);

  KernelSourceType::PointType origin;
  origin[0] = 0.0;
  origin[1] = 0.0;
  kernelSource->SetOrigin(origin);

  KernelSourceType::SpacingType spacing;
  spacing[0] = 1.0;
  spacing[1] = 1.0;
  kernelSource->SetSpacing(spacing);

  KernelSourceType::ArrayType sigma;
  sigma[0] = 2.0;
  sigma[1] = 4.0;
  kernelSource->SetSigma(sigma);

  KernelSourceType::ArrayType mean;
  mean[0] = 0.5 * (size[0] - 1) * spacing[0];
  mean[1] = 0.5 * (size[1] - 1) * spacing[1];
  kernelSource->SetMean(mean);

  // Generate a convolution of the input image with a kernel computed
  // from a parametric image source. We'll try to recover those
  // parameters later.
  using ConvolutionFilterType = itk::FFTConvolutionImageFilter<ImageType>;
  auto convolutionFilter = ConvolutionFilterType::New();
  convolutionFilter->SetInput(inputReader->GetOutput());
  convolutionFilter->NormalizeOn();
  convolutionFilter->SetKernelImage(kernelSource->GetOutput());

  // Use the same SizeGreatestPrimeFactor across FFT backends to get
  // consistent results.
  convolutionFilter->SetSizeGreatestPrimeFactor(5);

  // Create an instance of the deconvolution filter
  using DeconvolutionFilterType = itk::ParametricBlindLeastSquaresDeconvolutionImageFilter<ImageType, KernelSourceType>;
  auto deconvolutionFilter = DeconvolutionFilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(
    deconvolutionFilter, ParametricBlindLeastSquaresDeconvolutionImageFilter, IterativeDeconvolutionImageFilter);


  deconvolutionFilter->SetKernelSource(kernelSource);
  ITK_TEST_SET_GET_VALUE(kernelSource, deconvolutionFilter->GetKernelSource());

  deconvolutionFilter->SetSizeGreatestPrimeFactor(5);

  // Change the sigma settings here to something different

  KernelSourceType::ParametersType parameters(kernelSource->GetParameters());
  parameters[0] = 3.0;
  parameters[1] = 3.0;
  kernelSource->SetParameters(parameters);

  deconvolutionFilter->NormalizeOn();
  double alpha = std::stod(argv[4]);
  double beta = std::stod(argv[5]);
  deconvolutionFilter->SetAlpha(alpha);
  deconvolutionFilter->SetBeta(beta);
  deconvolutionFilter->SetInput(convolutionFilter->GetOutput());
  deconvolutionFilter->SetNumberOfIterations(std::stoi(argv[3]));
  deconvolutionFilter->UpdateLargestPossibleRegion();

  std::cout << "Kernel parameters: " << kernelSource->GetParameters() << std::endl;
  try
  {
    auto writer = WriterType::New();
    writer->SetFileName(argv[2]);
    writer->SetInput(deconvolutionFilter->GetOutput());
    writer->Update();
  }
  catch (const itk::ExceptionObject & e)
  {
    std::cerr << "Unexpected exception caught when writing deconvolution image: " << e << std::endl;
    return EXIT_FAILURE;
  }

  KernelSourceType::ParametersValueType expectedSigmaX = 2.90243;
  if (itk::Math::abs(kernelSource->GetParameters()[0] - expectedSigmaX) > 1e-5)
  {
    std::cerr << "Kernel parameter[0] should have been " << expectedSigmaX << ", was "
              << kernelSource->GetParameters()[0] << '.' << std::endl;
    return EXIT_FAILURE;
  }

  KernelSourceType::ParametersValueType expectedSigmaY = 2.90597;
  if (itk::Math::abs(kernelSource->GetParameters()[1] - expectedSigmaY) > 1e-5)
  {
    std::cerr << "Kernel parameter[1] should have been " << expectedSigmaY << ", was "
              << kernelSource->GetParameters()[0] << '.' << std::endl;
    return EXIT_FAILURE;
  }

  // Optionally write the convolution image on which we're testing the
  // deconvolution filter
  if (argc >= 7)
  {
    try
    {
      auto writer = WriterType::New();
      writer->SetFileName(argv[6]);
      writer->SetInput(convolutionFilter->GetOutput());
      writer->Update();
    }
    catch (const itk::ExceptionObject & e)
    {
      std::cerr << "Unexpected exception caught when writing convolution image: " << e << std::endl;
      return EXIT_FAILURE;
    }
  }

  // Exercise the setters/getters
  ITK_TEST_SET_GET_VALUE(alpha, deconvolutionFilter->GetAlpha());
  ITK_TEST_SET_GET_VALUE(beta, deconvolutionFilter->GetBeta());

  return EXIT_SUCCESS;
}