File: itkSigmoidImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,404 kB
  • sloc: cpp: 783,697; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (151 lines) | stat: -rw-r--r-- 4,607 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkMath.h"
#include "itkSigmoidImageFilter.h"
#include "itkTestingMacros.h"


int
itkSigmoidImageFilterTest(int, char *[])
{

  // Define the dimension of the images
  constexpr unsigned int ImageDimension = 3;

  // Declare the types of the images
  using InputPixelType = float;
  using OutputPixelType = float;

  using InputImageType = itk::Image<InputPixelType, ImageDimension>;
  using OutputImageType = itk::Image<OutputPixelType, ImageDimension>;

  // Declare appropriate Iterator types for each image
  using InputIteratorType = itk::ImageRegionIteratorWithIndex<InputImageType>;
  using OutputIteratorType = itk::ImageRegionIteratorWithIndex<OutputImageType>;

  // Declare the type of the index to access images
  using IndexType = itk::Index<ImageDimension>;

  // Declare the type of the size
  using SizeType = itk::Size<ImageDimension>;

  // Declare the type of the Region
  using RegionType = itk::ImageRegion<ImageDimension>;

  // Create the input images
  auto inputImage = InputImageType::New();

  // Define their size, and start index
  SizeType size;
  size[0] = 2;
  size[1] = 2;
  size[2] = 2;

  IndexType start;
  start[0] = 0;
  start[1] = 0;
  start[2] = 0;

  RegionType region;
  region.SetIndex(start);
  region.SetSize(size);

  // Initialize the input image
  inputImage->SetRegions(region);
  inputImage->Allocate();

  // Create one iterator for the input image (this is a light object)
  InputIteratorType it(inputImage, inputImage->GetBufferedRegion());

  // Initialize the content of the input image
  constexpr double value = 30;
  it.GoToBegin();
  while (!it.IsAtEnd())
  {
    it.Set(value);
    ++it;
  }

  // Declare the type for the Sigmoid filter
  using FilterType = itk::SigmoidImageFilter<InputImageType, OutputImageType>;

  // Create the filter
  auto filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, SigmoidImageFilter, UnaryFunctorImageFilter);

  // Set the input image
  filter->SetInput(inputImage);

  // Set the filter parameters
  constexpr double alpha = 2.0;
  constexpr double beta = 3.0;

  filter->SetAlpha(alpha);
  ITK_TEST_SET_GET_VALUE(alpha, filter->GetAlpha());

  filter->SetBeta(beta);
  ITK_TEST_SET_GET_VALUE(beta, filter->GetBeta());

  constexpr OutputPixelType maximum = 1.0;
  const OutputPixelType     minimum = -1.0;

  filter->SetOutputMinimum(minimum);
  ITK_TEST_SET_GET_VALUE(minimum, filter->GetOutputMinimum());

  filter->SetOutputMaximum(maximum);
  ITK_TEST_SET_GET_VALUE(maximum, filter->GetOutputMaximum());

  filter->SetFunctor(filter->GetFunctor());

  // Execute the filter
  filter->Update();

  // Get the filter output
  OutputImageType::Pointer outputImage = filter->GetOutput();

  // Create an iterator for going through the image output
  OutputIteratorType ot(outputImage, outputImage->GetRequestedRegion());

  // Check the content of the result image
  const OutputImageType::PixelType epsilon = 1e-6;
  ot.GoToBegin();
  it.GoToBegin();
  while (!ot.IsAtEnd())
  {
    const InputImageType::PixelType  input = it.Get();
    const OutputImageType::PixelType output = ot.Get();
    const double                     x1 = (input - beta) / alpha;
    const double                     x2 = (maximum - minimum) * (1.0 / (1.0 + std::exp(-x1))) + minimum;
    const auto                       sigmoid = static_cast<OutputImageType::PixelType>(x2);
    if (!itk::Math::FloatAlmostEqual(sigmoid, output, 10, epsilon))
    {
      std::cerr.precision(static_cast<int>(itk::Math::abs(std::log10(epsilon))));
      std::cerr << "Error " << std::endl;
      std::cerr << " simoid( " << input << ") = " << sigmoid << std::endl;
      std::cerr << " differs from " << output;
      std::cerr << " by more than " << epsilon << std::endl;
      return EXIT_FAILURE;
    }
    ++ot;
    ++it;
  }

  return EXIT_SUCCESS;
}