1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRecursiveGaussianImageFilter_h
#define itkRecursiveGaussianImageFilter_h
#include "itkRecursiveSeparableImageFilter.h"
#include "ITKSmoothingExport.h"
namespace itk
{
/** \class RecursiveGaussianImageFilterEnums
* \brief Contains all enum classes used by RecursiveGaussianImageFilter class.
* \ingroup ITKSmoothing
*/
class RecursiveGaussianImageFilterEnums
{
public:
/** \class GaussianOrder
* \ingroup ITKSmoothing
* Enum type that indicates if the filter applies the equivalent operation
of convolving with a gaussian, first derivative of a gaussian or the
second derivative of a gaussian. */
enum class GaussianOrder : uint8_t
{
ZeroOrder = 0,
FirstOrder = 1,
SecondOrder = 2
};
};
// Define how to print enumeration
extern ITKSmoothing_EXPORT std::ostream &
operator<<(std::ostream & out, const RecursiveGaussianImageFilterEnums::GaussianOrder value);
using GaussianOrderEnum = RecursiveGaussianImageFilterEnums::GaussianOrder;
#if !defined(ITK_LEGACY_REMOVE)
/** Enables backwards compatibility for enum values */
using OrderEnumType = GaussianOrderEnum;
using EnumGaussianOrderType = GaussianOrderEnum;
// We need to expose the enum values at the class level
// for backwards compatibility
static constexpr GaussianOrderEnum ZeroOrder = GaussianOrderEnum::ZeroOrder;
static constexpr GaussianOrderEnum FirstOrder = GaussianOrderEnum::FirstOrder;
static constexpr GaussianOrderEnum SecondOrder = GaussianOrderEnum::SecondOrder;
#endif
/**
* \class RecursiveGaussianImageFilter
* \brief Base class for computing IIR convolution with an approximation of a Gaussian kernel.
*
* \f[
* \frac{ 1 }{ \sigma \sqrt{ 2 \pi } } \exp{ \left( - \frac{x^2}{ 2 \sigma^2 } \right) }
* \f]
*
* RecursiveGaussianImageFilter is the base class for recursive filters that
* approximate convolution with the Gaussian kernel.
* This class implements the recursive filtering
* method proposed by R.Deriche in IEEE-PAMI
* Vol.12, No.1, January 1990, pp 78-87,
* "Fast Algorithms for Low-Level Vision"
*
* Details of the implementation are described in the technical report:
* R. Deriche, "Recursively Implementing The Gaussian and Its Derivatives",
* INRIA, 1993, ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-1893.ps.gz
*
* Further improvements of the algorithm are described in:
* G. Farnebäck & C.-F. Westin, "Improving Deriche-style Recursive Gaussian
* Filters". J Math Imaging Vis 26, 293–299 (2006).
* https://doi.org/10.1007/s10851-006-8464-z
*
* As compared to itk::DiscreteGaussianImageFilter, this filter tends
* to be faster for large kernels, and it can take the derivative
* of the blurred image in one step. Also, note that we have
* itk::RecursiveGaussianImageFilter::SetSigma(), but
* itk::DiscreteGaussianImageFilter::SetVariance().
*
* \ingroup ImageEnhancement SingleThreaded
* \see DiscreteGaussianImageFilter
* \ingroup ITKSmoothing
*
* \sphinx
* \sphinxexample{Filtering/Smoothing/FindHigherDerivativesOfImage,Find Higher Derivatives Of Image}
* \endsphinx
*/
template <typename TInputImage, typename TOutputImage = TInputImage>
class ITK_TEMPLATE_EXPORT RecursiveGaussianImageFilter : public RecursiveSeparableImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(RecursiveGaussianImageFilter);
/** Standard class type aliases. */
using Self = RecursiveGaussianImageFilter;
using Superclass = RecursiveSeparableImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using typename Superclass::RealType;
using typename Superclass::ScalarRealType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(RecursiveGaussianImageFilter);
/** Set/Get the Sigma, measured in world coordinates, of the Gaussian
* kernel. The default is 1.0. An exception will be generated if
* the Sigma value is less than or equal to zero.
*/
itkGetConstMacro(Sigma, ScalarRealType);
itkSetMacro(Sigma, ScalarRealType);
/** Type of the output image */
using OutputImageType = TOutputImage;
#if !defined(ITK_LEGACY_REMOVE)
/** Enables backwards compatibility for enum values */
using OrderEnumType = GaussianOrderEnum;
using EnumGaussianOrderType = GaussianOrderEnum;
// We need to expose the enum values at the class level
// for backwards compatibility
static constexpr GaussianOrderEnum ZeroOrder = GaussianOrderEnum::ZeroOrder;
static constexpr GaussianOrderEnum FirstOrder = GaussianOrderEnum::FirstOrder;
static constexpr GaussianOrderEnum SecondOrder = GaussianOrderEnum::SecondOrder;
#endif
/** Set/Get the flag for normalizing the gaussian over scale-space.
This flag enables the analysis of the differential shape of
features independent of their size ( both pixels and physical
size ). Following the notation of Tony Lindeberg:
Let \f[ L(x; t) = g(x; t) \ast f(x) \f] be the scale-space
representation of image \f[ f(x) \f]
where \f[ g(x; t) = \frac{1}{ \sqrt{ 2 \pi t} } \exp{ \left( -\frac{x^2}{ 2 t } \right) } \f] is
the Gaussian function and \f[\ast\f] denotes convolution. This
is a change from above with \f[ t = \sigma^2 \f].
Then the normalized derivative operator for normalized
coordinates across scale is:
\f[
\partial_\xi = \sqrt{t} \partial_x
\f]
The resulting scaling factor is
\f[
\sigma^N
\f]
where N is the order of the derivative.
When this flag is ON the filter will be normalized in such a way
that the values of derivatives are not biased by the size of the
object. That is to say the maximum value a feature reaches across
scale is independent of the scale of the object.
For analyzing an image across scale-space you want to enable
this flag. It is disabled by default.
\note Not all scale space axioms are satisfied by this filter,
some are only approximated. Particularly, at fine scales ( say
less than 1 pixel ) other methods such as a discrete Gaussian
kernel should be considered.
*/
itkSetMacro(NormalizeAcrossScale, bool);
itkGetConstMacro(NormalizeAcrossScale, bool);
itkBooleanMacro(NormalizeAcrossScale);
/** Set/Get the Order of the Gaussian to convolve with.
\li ZeroOrder is equivalent to convolving with a Gaussian. This
is the default.
\li FirstOrder is equivalent to convolving with the first derivative of a Gaussian.
\li SecondOrder is equivalent to convolving with the second derivative of a Gaussian.
*/
itkSetMacro(Order, GaussianOrderEnum);
itkGetConstMacro(Order, GaussianOrderEnum);
/** Explicitly set a zeroth order derivative. */
void
SetZeroOrder();
/** Explicitly set a first order derivative. */
void
SetFirstOrder();
/** Explicitly set a second order derivative. */
void
SetSecondOrder();
protected:
RecursiveGaussianImageFilter();
~RecursiveGaussianImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Set up the coefficients of the filter to approximate a specific kernel.
* Here it is used to approximate a Gaussian or one of its
* derivatives. Parameter is the spacing along the dimension to
* filter. */
void
SetUp(ScalarRealType spacing) override;
/* See superclass for doxygen. This method adds the additional check
* that sigma is greater than zero. */
void
VerifyPreconditions() ITKv5_CONST override;
private:
/** Compute the N coefficients in the recursive filter. */
void
ComputeNCoefficients(ScalarRealType sigmad,
ScalarRealType A1,
ScalarRealType B1,
ScalarRealType W1,
ScalarRealType L1,
ScalarRealType A2,
ScalarRealType B2,
ScalarRealType W2,
ScalarRealType L2,
ScalarRealType & N0,
ScalarRealType & N1,
ScalarRealType & N2,
ScalarRealType & N3,
ScalarRealType & SN,
ScalarRealType & DN,
ScalarRealType & EN);
/** Compute the D coefficients in the recursive filter. */
void
ComputeDCoefficients(ScalarRealType sigmad,
ScalarRealType W1,
ScalarRealType L1,
ScalarRealType W2,
ScalarRealType L2,
ScalarRealType & SD,
ScalarRealType & DD,
ScalarRealType & ED);
/** Compute the M coefficients and the boundary coefficients in the
* recursive filter. */
void
ComputeRemainingCoefficients(bool symmetric);
/** Sigma of the gaussian kernel. */
ScalarRealType m_Sigma{};
/** Normalize the image across scale space */
bool m_NormalizeAcrossScale{};
GaussianOrderEnum m_Order{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkRecursiveGaussianImageFilter.hxx"
#endif
#endif
|