1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkSampleClassifierFilter.h"
#include "itkSampleToHistogramFilter.h"
#include "itkNeighborhoodSampler.h"
#include "itkScalarImageToCooccurrenceListSampleFilter.h"
#include "itkScalarImageToTextureFeaturesFilter.h"
#include "itkWeightedCovarianceSampleFilter.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkPointSetToListSampleAdaptor.h"
#include "itkJointDomainImageToListSampleAdaptor.h"
#include "itkMaximumDecisionRule.h"
#include "itkMinimumDecisionRule.h"
#include "itkEuclideanSquareDistanceMetric.h"
#include "itkMahalanobisDistanceMetric.h"
#include "itkManhattanDistanceMetric.h"
#include "itkImageClassifierFilter.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
int
itkStatisticsPrintTest(int, char *[])
{
using TMeasurementType = float;
using TMeasurementVectorType = itk::FixedArray<TMeasurementType, 2>;
using ImageType = itk::Image<TMeasurementVectorType, 3>;
using ScalarImageType = itk::Image<unsigned char, 3>;
using PointSetType = itk::PointSet<TMeasurementType, 2>;
using OutputImageType = itk::Image<unsigned long, 3>;
using SampleType = itk::Statistics::ListSample<TMeasurementVectorType>;
using SubSampleType = itk::Statistics::Subsample<SampleType>;
using HistogramType = itk::Statistics::Histogram<TMeasurementType>;
using SampleToHistogramFilterType = itk::Statistics::SampleToHistogramFilter<SampleType, HistogramType>;
using SampleClassifierFilterType = itk::Statistics::SampleClassifierFilter<SampleType>;
using ImageClassifierFilterType = itk::Statistics::ImageClassifierFilter<SampleType, ImageType, OutputImageType>;
using ImageToListSampleFilterType = itk::Statistics::ImageToListSampleFilter<ImageType, ScalarImageType>;
using ImageToListSampleAdaptorType = itk::Statistics::ImageToListSampleAdaptor<ImageType>;
using JointDomainImageToListSampleAdaptorType = itk::Statistics::JointDomainImageToListSampleAdaptor<ImageType>;
using ScalarImageToCooccurrenceMatrixFilterType =
itk::Statistics::ScalarImageToCooccurrenceMatrixFilter<ScalarImageType>;
using ScalarImageToCooccurrenceListSampleFilterType =
itk::Statistics::ScalarImageToCooccurrenceListSampleFilter<ScalarImageType>;
using ScalarImageToTextureFeaturesFilterType = itk::Statistics::ScalarImageToTextureFeaturesFilter<ScalarImageType>;
using MembershipSampleType = itk::Statistics::MembershipSample<SampleType>;
using DistanceToCentroidMembershipFunctionType =
itk::Statistics::DistanceToCentroidMembershipFunction<TMeasurementVectorType>;
using EuclideanDistanceMetricType = itk::Statistics::EuclideanDistanceMetric<TMeasurementVectorType>;
using EuclideanSquareDistanceMetricType = itk::Statistics::EuclideanSquareDistanceMetric<TMeasurementVectorType>;
using MahalanobisDistanceMetricType = itk::Statistics::MahalanobisDistanceMetric<TMeasurementVectorType>;
using ManhattanDistanceMetricType = itk::Statistics::ManhattanDistanceMetric<TMeasurementVectorType>;
using MaximumDecisionRuleType = itk::Statistics::MaximumDecisionRule;
using MinimumDecisionRuleType = itk::Statistics::MinimumDecisionRule;
using HistogramToTextureFeaturesFilterType = itk::Statistics::HistogramToTextureFeaturesFilter<HistogramType>;
using MeanSampleFilterType = itk::Statistics::MeanSampleFilter<SampleType>;
using WeightedMeanSampleFilterType = itk::Statistics::WeightedMeanSampleFilter<SampleType>;
using CovarianceSampleFilterType = itk::Statistics::CovarianceSampleFilter<SampleType>;
using WeightedCovarianceSampleFilterType = itk::Statistics::WeightedCovarianceSampleFilter<SampleType>;
using NeighborhoodSamplerType = itk::Statistics::NeighborhoodSampler<SampleType>;
using PointSetToListSampleAdaptorType = itk::Statistics::PointSetToListSampleAdaptor<PointSetType>;
using DenseFrequencyContainer2Type = itk::Statistics::DenseFrequencyContainer2;
using SparseFrequencyContainer2Type = itk::Statistics::SparseFrequencyContainer2;
using EMEstimatorType = itk::Statistics::ExpectationMaximizationMixtureModelEstimator<SampleType>;
using TreeGeneratorType = itk::Statistics::WeightedCentroidKdTreeGenerator<SampleType>;
using KdTreeBasedKMeansEstimatorType = itk::Statistics::KdTreeBasedKmeansEstimator<TreeGeneratorType::KdTreeType>;
auto sampleObj = SampleType::New();
std::cout << "----------ListSample " << sampleObj;
auto subsampleObj = SubSampleType::New();
std::cout << "----------Subsample " << subsampleObj;
auto HistogramObj = HistogramType::New();
std::cout << "----------Histogram " << HistogramObj;
auto SampleToHistogramFilterObj = SampleToHistogramFilterType::New();
std::cout << "----------SampleToHistogramFilter ";
std::cout << SampleToHistogramFilterObj;
auto xSampleClassifierFilterObj = SampleClassifierFilterType::New();
std::cout << "----------SampleClassifierFilter ";
std::cout << xSampleClassifierFilterObj;
auto ImageToListSampleFilterObj = ImageToListSampleFilterType::New();
std::cout << "----------ImageToListSampleFilter ";
std::cout << ImageToListSampleFilterObj;
auto ImageToListSampleAdaptorObj = ImageToListSampleAdaptorType::New();
std::cout << "----------ImageToListSampleAdaptor ";
std::cout << ImageToListSampleAdaptorObj;
JointDomainImageToListSampleAdaptorType::Pointer JointDomainImageToListSampleAdaptorObj =
JointDomainImageToListSampleAdaptorType::New();
std::cout << "----------JointDomainImageToListSampleAdaptor ";
std::cout << JointDomainImageToListSampleAdaptorObj;
auto PointSetToListSampleAdaptorObj = PointSetToListSampleAdaptorType::New();
std::cout << "----------PointSetToListSampleAdaptor ";
std::cout << PointSetToListSampleAdaptorObj;
ScalarImageToCooccurrenceMatrixFilterType::Pointer ScalarImageToCooccurrenceMatrixFilterObj =
ScalarImageToCooccurrenceMatrixFilterType::New();
std::cout << "----------ScalarImageToCooccurrenceMatrixFilter ";
std::cout << ScalarImageToCooccurrenceMatrixFilterObj;
ScalarImageToCooccurrenceListSampleFilterType::Pointer ScalarImageToCooccurrenceListSampleFilterObj =
ScalarImageToCooccurrenceListSampleFilterType::New();
std::cout << "----------ScalarImageToCooccurrenceListSampleFilter ";
std::cout << ScalarImageToCooccurrenceListSampleFilterObj;
ScalarImageToTextureFeaturesFilterType::Pointer ScalarImageToTextureFeaturesFilterObj =
ScalarImageToTextureFeaturesFilterType::New();
std::cout << "----------ScalarImageToTextureFeaturesFilter ";
std::cout << ScalarImageToTextureFeaturesFilterObj;
HistogramToTextureFeaturesFilterType::Pointer HistogramToTextureFeaturesFilterObj =
HistogramToTextureFeaturesFilterType::New();
std::cout << "----------HistogramToTextureFeaturesFilter " << HistogramToTextureFeaturesFilterObj;
auto MembershipSampleObj = MembershipSampleType::New();
std::cout << "----------MembershipSample " << MembershipSampleObj;
DistanceToCentroidMembershipFunctionType::Pointer DistanceToCentroidMembershipFunctionObj =
DistanceToCentroidMembershipFunctionType::New();
std::cout << "----------DistanceToCentroidMembershipFunction " << DistanceToCentroidMembershipFunctionObj;
auto meanFilterObj = MeanSampleFilterType::New();
std::cout << "----------Mean filter " << meanFilterObj;
auto weighedMeanSampleFilterObj = WeightedMeanSampleFilterType::New();
std::cout << "----------WeightedMean filter " << weighedMeanSampleFilterObj;
auto covarianceFilterObj = CovarianceSampleFilterType::New();
std::cout << "----------Covariance filter " << covarianceFilterObj;
WeightedCovarianceSampleFilterType::Pointer weighedCovarianceSampleFilterObj =
WeightedCovarianceSampleFilterType::New();
std::cout << "----------WeightedCovariance filter " << weighedCovarianceSampleFilterObj;
auto neighborhoodSamplerObj = NeighborhoodSamplerType::New();
std::cout << "----------NeighborhoodSamplerType filter " << neighborhoodSamplerObj;
auto DenseFrequencyContainer2Obj = DenseFrequencyContainer2Type::New();
std::cout << "----------DenseFrequencyContainer " << DenseFrequencyContainer2Obj;
auto SparseFrequencyContainer2Obj = SparseFrequencyContainer2Type::New();
std::cout << "----------SparseFrequencyContainer2 " << SparseFrequencyContainer2Obj;
auto euclideanDistance = EuclideanDistanceMetricType::New();
std::cout << "----------EuclideanDistanceMetricType " << euclideanDistance;
auto euclideanSquareDistance = EuclideanSquareDistanceMetricType::New();
std::cout << "----------EuclideanSquareDistanceMetricType " << euclideanSquareDistance;
auto mahalanobisDistance = MahalanobisDistanceMetricType::New();
std::cout << "----------MahalanobisDistanceMetricType " << mahalanobisDistance;
auto manhattanDistance = ManhattanDistanceMetricType::New();
std::cout << "----------ManhattanDistanceMetricType " << manhattanDistance;
auto maximumDecsion = MaximumDecisionRuleType::New();
std::cout << "----------MaximumDecisionRuleType " << maximumDecsion;
auto minimumDecsion = MinimumDecisionRuleType::New();
std::cout << "----------MinimumDecisionRuleType " << minimumDecsion;
auto classifierFilter = ImageClassifierFilterType::New();
std::cout << "----------ImageClassifierFilterType " << classifierFilter;
auto emEstimator = EMEstimatorType::New();
std::cout << "----------EMEstimatorType " << emEstimator;
auto kdTreeBasedEstimator = KdTreeBasedKMeansEstimatorType::New();
std::cout << "----------KdTreeBasedKMeansEstimatorType " << kdTreeBasedEstimator;
return EXIT_SUCCESS;
}
|