File: itkStatisticsPrintTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,404 kB
  • sloc: cpp: 783,697; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (225 lines) | stat: -rw-r--r-- 10,363 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkSampleClassifierFilter.h"
#include "itkSampleToHistogramFilter.h"
#include "itkNeighborhoodSampler.h"
#include "itkScalarImageToCooccurrenceListSampleFilter.h"
#include "itkScalarImageToTextureFeaturesFilter.h"
#include "itkWeightedCovarianceSampleFilter.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkPointSetToListSampleAdaptor.h"
#include "itkJointDomainImageToListSampleAdaptor.h"
#include "itkMaximumDecisionRule.h"
#include "itkMinimumDecisionRule.h"
#include "itkEuclideanSquareDistanceMetric.h"
#include "itkMahalanobisDistanceMetric.h"
#include "itkManhattanDistanceMetric.h"
#include "itkImageClassifierFilter.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"

int
itkStatisticsPrintTest(int, char *[])
{
  using TMeasurementType = float;

  using TMeasurementVectorType = itk::FixedArray<TMeasurementType, 2>;
  using ImageType = itk::Image<TMeasurementVectorType, 3>;
  using ScalarImageType = itk::Image<unsigned char, 3>;
  using PointSetType = itk::PointSet<TMeasurementType, 2>;
  using OutputImageType = itk::Image<unsigned long, 3>;

  using SampleType = itk::Statistics::ListSample<TMeasurementVectorType>;

  using SubSampleType = itk::Statistics::Subsample<SampleType>;

  using HistogramType = itk::Statistics::Histogram<TMeasurementType>;

  using SampleToHistogramFilterType = itk::Statistics::SampleToHistogramFilter<SampleType, HistogramType>;

  using SampleClassifierFilterType = itk::Statistics::SampleClassifierFilter<SampleType>;

  using ImageClassifierFilterType = itk::Statistics::ImageClassifierFilter<SampleType, ImageType, OutputImageType>;

  using ImageToListSampleFilterType = itk::Statistics::ImageToListSampleFilter<ImageType, ScalarImageType>;

  using ImageToListSampleAdaptorType = itk::Statistics::ImageToListSampleAdaptor<ImageType>;

  using JointDomainImageToListSampleAdaptorType = itk::Statistics::JointDomainImageToListSampleAdaptor<ImageType>;

  using ScalarImageToCooccurrenceMatrixFilterType =
    itk::Statistics::ScalarImageToCooccurrenceMatrixFilter<ScalarImageType>;

  using ScalarImageToCooccurrenceListSampleFilterType =
    itk::Statistics::ScalarImageToCooccurrenceListSampleFilter<ScalarImageType>;

  using ScalarImageToTextureFeaturesFilterType = itk::Statistics::ScalarImageToTextureFeaturesFilter<ScalarImageType>;

  using MembershipSampleType = itk::Statistics::MembershipSample<SampleType>;

  using DistanceToCentroidMembershipFunctionType =
    itk::Statistics::DistanceToCentroidMembershipFunction<TMeasurementVectorType>;

  using EuclideanDistanceMetricType = itk::Statistics::EuclideanDistanceMetric<TMeasurementVectorType>;

  using EuclideanSquareDistanceMetricType = itk::Statistics::EuclideanSquareDistanceMetric<TMeasurementVectorType>;

  using MahalanobisDistanceMetricType = itk::Statistics::MahalanobisDistanceMetric<TMeasurementVectorType>;

  using ManhattanDistanceMetricType = itk::Statistics::ManhattanDistanceMetric<TMeasurementVectorType>;

  using MaximumDecisionRuleType = itk::Statistics::MaximumDecisionRule;
  using MinimumDecisionRuleType = itk::Statistics::MinimumDecisionRule;

  using HistogramToTextureFeaturesFilterType = itk::Statistics::HistogramToTextureFeaturesFilter<HistogramType>;

  using MeanSampleFilterType = itk::Statistics::MeanSampleFilter<SampleType>;

  using WeightedMeanSampleFilterType = itk::Statistics::WeightedMeanSampleFilter<SampleType>;

  using CovarianceSampleFilterType = itk::Statistics::CovarianceSampleFilter<SampleType>;

  using WeightedCovarianceSampleFilterType = itk::Statistics::WeightedCovarianceSampleFilter<SampleType>;

  using NeighborhoodSamplerType = itk::Statistics::NeighborhoodSampler<SampleType>;

  using PointSetToListSampleAdaptorType = itk::Statistics::PointSetToListSampleAdaptor<PointSetType>;

  using DenseFrequencyContainer2Type = itk::Statistics::DenseFrequencyContainer2;

  using SparseFrequencyContainer2Type = itk::Statistics::SparseFrequencyContainer2;

  using EMEstimatorType = itk::Statistics::ExpectationMaximizationMixtureModelEstimator<SampleType>;

  using TreeGeneratorType = itk::Statistics::WeightedCentroidKdTreeGenerator<SampleType>;

  using KdTreeBasedKMeansEstimatorType = itk::Statistics::KdTreeBasedKmeansEstimator<TreeGeneratorType::KdTreeType>;

  auto sampleObj = SampleType::New();
  std::cout << "----------ListSample " << sampleObj;

  auto subsampleObj = SubSampleType::New();
  std::cout << "----------Subsample " << subsampleObj;

  auto HistogramObj = HistogramType::New();
  std::cout << "----------Histogram " << HistogramObj;

  auto SampleToHistogramFilterObj = SampleToHistogramFilterType::New();
  std::cout << "----------SampleToHistogramFilter ";
  std::cout << SampleToHistogramFilterObj;

  auto xSampleClassifierFilterObj = SampleClassifierFilterType::New();
  std::cout << "----------SampleClassifierFilter ";
  std::cout << xSampleClassifierFilterObj;

  auto ImageToListSampleFilterObj = ImageToListSampleFilterType::New();
  std::cout << "----------ImageToListSampleFilter ";
  std::cout << ImageToListSampleFilterObj;

  auto ImageToListSampleAdaptorObj = ImageToListSampleAdaptorType::New();
  std::cout << "----------ImageToListSampleAdaptor ";
  std::cout << ImageToListSampleAdaptorObj;

  JointDomainImageToListSampleAdaptorType::Pointer JointDomainImageToListSampleAdaptorObj =
    JointDomainImageToListSampleAdaptorType::New();
  std::cout << "----------JointDomainImageToListSampleAdaptor ";
  std::cout << JointDomainImageToListSampleAdaptorObj;

  auto PointSetToListSampleAdaptorObj = PointSetToListSampleAdaptorType::New();
  std::cout << "----------PointSetToListSampleAdaptor ";
  std::cout << PointSetToListSampleAdaptorObj;

  ScalarImageToCooccurrenceMatrixFilterType::Pointer ScalarImageToCooccurrenceMatrixFilterObj =
    ScalarImageToCooccurrenceMatrixFilterType::New();
  std::cout << "----------ScalarImageToCooccurrenceMatrixFilter ";
  std::cout << ScalarImageToCooccurrenceMatrixFilterObj;

  ScalarImageToCooccurrenceListSampleFilterType::Pointer ScalarImageToCooccurrenceListSampleFilterObj =
    ScalarImageToCooccurrenceListSampleFilterType::New();
  std::cout << "----------ScalarImageToCooccurrenceListSampleFilter ";
  std::cout << ScalarImageToCooccurrenceListSampleFilterObj;

  ScalarImageToTextureFeaturesFilterType::Pointer ScalarImageToTextureFeaturesFilterObj =
    ScalarImageToTextureFeaturesFilterType::New();
  std::cout << "----------ScalarImageToTextureFeaturesFilter ";
  std::cout << ScalarImageToTextureFeaturesFilterObj;

  HistogramToTextureFeaturesFilterType::Pointer HistogramToTextureFeaturesFilterObj =
    HistogramToTextureFeaturesFilterType::New();
  std::cout << "----------HistogramToTextureFeaturesFilter " << HistogramToTextureFeaturesFilterObj;

  auto MembershipSampleObj = MembershipSampleType::New();
  std::cout << "----------MembershipSample " << MembershipSampleObj;

  DistanceToCentroidMembershipFunctionType::Pointer DistanceToCentroidMembershipFunctionObj =
    DistanceToCentroidMembershipFunctionType::New();
  std::cout << "----------DistanceToCentroidMembershipFunction " << DistanceToCentroidMembershipFunctionObj;

  auto meanFilterObj = MeanSampleFilterType::New();
  std::cout << "----------Mean filter " << meanFilterObj;

  auto weighedMeanSampleFilterObj = WeightedMeanSampleFilterType::New();
  std::cout << "----------WeightedMean filter " << weighedMeanSampleFilterObj;

  auto covarianceFilterObj = CovarianceSampleFilterType::New();
  std::cout << "----------Covariance filter " << covarianceFilterObj;

  WeightedCovarianceSampleFilterType::Pointer weighedCovarianceSampleFilterObj =
    WeightedCovarianceSampleFilterType::New();
  std::cout << "----------WeightedCovariance filter " << weighedCovarianceSampleFilterObj;

  auto neighborhoodSamplerObj = NeighborhoodSamplerType::New();
  std::cout << "----------NeighborhoodSamplerType filter " << neighborhoodSamplerObj;

  auto DenseFrequencyContainer2Obj = DenseFrequencyContainer2Type::New();
  std::cout << "----------DenseFrequencyContainer " << DenseFrequencyContainer2Obj;

  auto SparseFrequencyContainer2Obj = SparseFrequencyContainer2Type::New();
  std::cout << "----------SparseFrequencyContainer2 " << SparseFrequencyContainer2Obj;

  auto euclideanDistance = EuclideanDistanceMetricType::New();
  std::cout << "----------EuclideanDistanceMetricType " << euclideanDistance;

  auto euclideanSquareDistance = EuclideanSquareDistanceMetricType::New();
  std::cout << "----------EuclideanSquareDistanceMetricType " << euclideanSquareDistance;

  auto mahalanobisDistance = MahalanobisDistanceMetricType::New();
  std::cout << "----------MahalanobisDistanceMetricType " << mahalanobisDistance;

  auto manhattanDistance = ManhattanDistanceMetricType::New();
  std::cout << "----------ManhattanDistanceMetricType " << manhattanDistance;

  auto maximumDecsion = MaximumDecisionRuleType::New();
  std::cout << "----------MaximumDecisionRuleType " << maximumDecsion;

  auto minimumDecsion = MinimumDecisionRuleType::New();
  std::cout << "----------MinimumDecisionRuleType " << minimumDecsion;

  auto classifierFilter = ImageClassifierFilterType::New();
  std::cout << "----------ImageClassifierFilterType " << classifierFilter;

  auto emEstimator = EMEstimatorType::New();
  std::cout << "----------EMEstimatorType " << emEstimator;

  auto kdTreeBasedEstimator = KdTreeBasedKMeansEstimatorType::New();
  std::cout << "----------KdTreeBasedKMeansEstimatorType " << kdTreeBasedEstimator;

  return EXIT_SUCCESS;
}