1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// The \doxygen{PointSet} class uses an internal container to manage the
// storage of \doxygen{Point}s. It is more efficient, in general, to manage
// points by using the access methods provided directly on the points
// container. The following example illustrates how to interact with the
// point container and how to use point iterators.
//
// Software Guide : EndLatex
#include "itkPointSet.h"
int
main(int, char *[])
{
using PointSetType = itk::PointSet<unsigned short, 3>;
// Software Guide : BeginLatex
//
// The type is defined by the \emph{traits} of the \code{PointSet}
// class. The following line conveniently takes the \code{PointsContainer}
// type from the \code{PointSet} traits and declares it in the global
// namespace.
//
// \index{itk::PointSet!PointsContainer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using PointsContainer = PointSetType::PointsContainer;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The actual type of \code{PointsContainer} depends on what style of
// \code{PointSet} is being used. The dynamic \code{PointSet} uses
// \doxygen{MapContainer} while the static \code{PointSet} uses
// \doxygen{VectorContainer}. The vector and map containers are basically
// ITK wrappers around the \href{https://www.sgi.com/tech/stl/}{STL}
// classes \href{https://www.sgi.com/tech/stl/Map.html}{\code{std::map}}
// and \href{https://www.sgi.com/tech/stl/Vector.html}{\code{std::vector}}.
// By default, \code{PointSet} uses a static style, and therefore the
// default type of point container is \code{VectorContainer}. Both map and
// vector containers are templated over the type of element they contain.
// In this case they are templated over \code{PointType}. Containers are
// reference counted objects, created with the \code{New()} method and
// assigned to a \doxygen{SmartPointer}. The following line creates a point
// container compatible with the type of the \code{PointSet} from which the
// trait has been taken.
//
// \index{PointsContainer!New()}
// \index{PointsContainer!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto points = PointsContainer::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \code{Point}s can now be defined using the \code{PointType} trait from
// the \code{PointSet}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using PointType = PointSetType::PointType;
PointType p0;
PointType p1;
p0[0] = -1.0;
p0[1] = 0.0;
p0[2] = 0.0; // Point 0 = {-1,0,0 }
p1[0] = 1.0;
p1[1] = 0.0;
p1[2] = 0.0; // Point 1 = { 1,0,0 }
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The created points can be inserted in the \code{PointsContainer} using
// the generic method \code{InsertElement()} which requires an identifier
// to be provided for each point.
//
// \index{PointsContainer!InsertElement()}
// \index{PointsContainer!InsertElement()}
// \index{itk::VectorContainer!InsertElement()}
// \index{itk::MapContainer!InsertElement()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
unsigned int pointId = 0;
points->InsertElement(pointId++, p0);
points->InsertElement(pointId++, p1);
// Software Guide : EndCodeSnippet
auto pointSet = PointSetType::New();
// Software Guide : BeginLatex
//
// Finally, the \code{PointsContainer} can be assigned to the
// \code{PointSet}. This will substitute any previously existing
// \code{PointsContainer} assigned to the \code{PointSet}. The assignment
// is done using the \code{SetPoints()} method.
//
// \index{itk::PointSet!SetPoints()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
pointSet->SetPoints(points);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{PointsContainer} object can be obtained from the
// \code{PointSet} using the \code{GetPoints()} method. This method
// returns a pointer to the actual container owned by the PointSet which is
// then assigned to a \code{SmartPointer}.
//
// \index{itk::PointSet!GetPoints()}
// \index{PointsContainer!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
PointsContainer::Pointer points2 = pointSet->GetPoints();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The most efficient way to sequentially visit the points is to use the
// iterators provided by PointsContainer. The \code{Iterator} type belongs
// to the traits of the PointsContainer classes. It behaves pretty much
// like the STL iterators.\footnote{If you dig deep enough into the code,
// you will discover that these iterators are actually ITK wrappers around
// STL iterators.} The Points iterator is not a reference counted class,
// so it is created directly from the traits without using SmartPointers.
//
// \index{PointsContainer!Iterator}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using PointsIterator = PointsContainer::Iterator;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The subsequent use of the iterator follows what you may expect from a
// STL iterator. The iterator to the first point is obtained from the
// container with the \code{Begin()} method and assigned to another
// iterator.
//
// \index{PointsContainer!Begin()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
PointsIterator pointIterator = points->Begin();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{++} operator on the iterator can be used to advance from one
// point to the next. The actual value of the Point to which the iterator
// is pointing can be obtained with the \code{Value()} method. The loop for
// walking through all the points can be controlled by comparing the
// current iterator with the iterator returned by the \code{End()} method
// of the PointsContainer. The following lines illustrate the typical loop
// for walking through the points.
//
// \index{PointsContainer!End()}
// \index{PointsContainer!Iterator}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
PointsIterator end = points->End();
while (pointIterator != end)
{
PointType p = pointIterator.Value(); // access the point
std::cout << p << std::endl; // print the point
++pointIterator; // advance to next point
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that as in STL, the iterator returned by the \code{End()} method is
// not a valid iterator. This is called a past-end iterator in order to
// indicate that it is the value resulting from advancing one step after
// visiting the last element in the container.
//
// The number of elements stored in a container can be queried with the
// \code{Size()} method. In the case of the PointSet, the following two
// lines of code are equivalent, both of them returning the number of
// points in the PointSet.
//
// \index{itk::PointSet!GetNumberOfPoints()}
// \index{itk::PointSet!GetPoints()}
// \index{PointsContainer!Size()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << pointSet->GetNumberOfPoints() << std::endl;
std::cout << pointSet->GetPoints()->Size() << std::endl;
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|