File: CannyEdgeDetectionImageFilter.cxx

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (190 lines) | stat: -rw-r--r-- 6,313 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : BeginLatex
//
//  This example introduces the use of the
//  \doxygen{CannyEdgeDetectionImageFilter}. Canny edge detection is widely
//  used for edge detection since it is the optimal solution satisfying the
//  constraints of good sensitivity, localization and noise robustness.  To
//  achieve this end, Canny edge detection is implemented internally as a
//  multi-stage algorithm, which involves Gaussian smoothing to remove noise,
//  calculation of gradient magnitudes to localize edge features, non-maximum
//  suppression to remove spurious features, and finally thresholding to yield
//  a binary image. Though the specifics of this internal pipeline are largely
//  abstracted from the user of the class, it is nonetheless beneficial to
//  have a general understanding of these components so that parameters can be
//  appropriately adjusted.
//
//  \index{itk::CannyEdgeDetectionImageFilter|textbf}
//
//  The first step required for using this filter is to include its header
//  file.
//
//  \index{itk::CannyEdgeDetectionImageFilter!header}
//
//  Software Guide : EndLatex

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkCastImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

// Software Guide : BeginCodeSnippet
#include "itkCannyEdgeDetectionImageFilter.h"
// Software Guide : EndCodeSnippet

int
main(int argc, char * argv[])
{

  if (argc < 3)
  {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImage outputImage"
              << " [variance upperThreshold lowerThreshold]" << std::endl;
    return EXIT_FAILURE;
  }

  const char * inputFilename = argv[1];
  const char * outputFilename = argv[2];

  float variance = 2.0;
  float upperThreshold = 0.0;
  float lowerThreshold = 0.0;

  if (argc > 3)
  {
    variance = std::stod(argv[3]);
  }

  if (argc > 4)
  {
    upperThreshold = std::stod(argv[4]);
  }

  if (argc > 5)
  {
    lowerThreshold = std::stod(argv[5]);
  }

  std::cout << "Variance = " << variance << std::endl;
  std::cout << "UpperThreshold = " << upperThreshold << std::endl;
  std::cout << "LowerThreshold = " << lowerThreshold << std::endl;

  //  Software Guide : BeginLatex
  //
  //  In this example, images are read and written with \code{unsigned char}
  //  pixel type.  However, Canny edge detection requires floating point
  //  pixel types in order to avoid numerical errors.  For this reason,
  //  a separate internal image type with pixel type \code{double} is defined
  //  for edge detection.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  constexpr unsigned int Dimension = 2;
  using CharPixelType = unsigned char; //  IO
  using RealPixelType = double;        //  Operations

  using CharImageType = itk::Image<CharPixelType, Dimension>;
  using RealImageType = itk::Image<RealPixelType, Dimension>;

  //  Software Guide : EndCodeSnippet

  using ReaderType = itk::ImageFileReader<CharImageType>;
  using WriterType = itk::ImageFileWriter<CharImageType>;

  //  Software Guide : BeginLatex
  //
  //  The \code{CharImageType} image is cast to and from \code{RealImageType}
  //  using \doxygen{CastImageFilter} and \code{RescaleIntensityImageFilter},
  //  respectively; both the input and output of
  //  \code{CannyEdgeDetectionImageFilter} are \code{RealImageType}.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  using CastToRealFilterType =
    itk::CastImageFilter<CharImageType, RealImageType>;
  using CannyFilterType =
    itk::CannyEdgeDetectionImageFilter<RealImageType, RealImageType>;
  using RescaleFilterType =
    itk::RescaleIntensityImageFilter<RealImageType, CharImageType>;

  //  Software Guide : EndCodeSnippet

  // Setting the IO

  auto reader = ReaderType::New();
  auto toReal = CastToRealFilterType::New();
  auto cannyFilter = CannyFilterType::New();
  auto rescale = RescaleFilterType::New();
  auto writer = WriterType::New();

  reader->SetFileName(inputFilename);
  writer->SetFileName(outputFilename);

  toReal->SetInput(reader->GetOutput());
  cannyFilter->SetInput(toReal->GetOutput());
  rescale->SetInput(cannyFilter->GetOutput());
  writer->SetInput(rescale->GetOutput());

  //  Software Guide : BeginLatex
  //
  //  In this example, three parameters of the Canny edge detection
  //  filter may be set via the \code{SetVariance()},
  //  \code{SetUpperThreshold()}, and \code{SetLowerThreshold()} methods.
  //  Based on the previous discussion of the steps in the internal pipeline,
  //  we understand that \code{variance} adjusts the amount of Gaussian
  //  smoothing and \code{upperThreshold} and \code{lowerThreshold} control
  //  which edges are selected in the final step.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  cannyFilter->SetVariance(variance);
  cannyFilter->SetUpperThreshold(upperThreshold);
  cannyFilter->SetLowerThreshold(lowerThreshold);

  //  Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Finally, \code{Update()} is called on \code{writer} to trigger
  //  execution of the pipeline.  As usual, the call is wrapped in a
  //  \code{try/catch} block.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  try
  {
    writer->Update();
  }
  catch (const itk::ExceptionObject & err)
  {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return EXIT_FAILURE;
  }

  // Software Guide : EndCodeSnippet

  return EXIT_SUCCESS;
}